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Abstract

Infinite-dimensional Traits: Estimation of Mean,

Covariance, and Selection Gradient of Tribolium

Castaneum Growth Curves

by

Ly Viet Hoang

The University of Wisconsin - Milwaukee, 2017

Under the Supervision of Professor Jay H. Beder

In evolutionary biology, traits like growth curves, reaction norms or morphological shapes

cannot be described by a finite vector of components alone. Instead, continuous functions

represent a more useful structure. Such traits are called function-valued or infinite-dimensional

traits. Kirkpatrick and Heckmann outlined the first quantitative genetic model for these traits.

Beder and Gomulkiewicz extended the theory on the selection gradient and the evolutionary

response from finite- to infinite-dimensional traits.

Rigorous methods for the estimation of these quantities were developed throughout the years.

In his dissertation, Baur defines estimators for the mean and covariance function, as well as for

the selection gradient based on two different assumptions. First, it is assumed that all individuals

are independent. The second case considers a sample of independent families of equally related

individuals. In this thesis, results of the estimations based on data on Tribolium Castaneum

larvae will be stated.

Estimations of the pre-selection mean, the evolutionary response to selection, and the phe-

notypic covariance function were run for five consecutive generations - once assuming that all

larvae are independent and once for independent families of full-siblings. Using the pre-selection

mean and the evolutionary response to selection, the mean function among newborns of the

successive generation is computed. The selection gradient is not explicitly estimated as it is

contained in the computation of the evolutionary response to selection.
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The differences in results from using Ornstein-Uhlenbeck and Wiener covariance functions

are examined. It becomes evident that the choice of the candidate covariance function heavily

impacts the results of the estimation. With respect to this observation, alternative ways to find

a suitable candidate covariance function, based on the provided data, are discussed.
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6.5 Gen0: Ĝ and P̂ in the dependent case using Ornstein-Uhlenbeck covariance function 46

6.6 Gen0: Mean function among organisms of the current generation ˆ̄z using Wiener

covariance function, based on log-transformed data on the left, re-transformed on

the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.7 Gen0: Mean function among organisms of the offspring generation ˆ̄z′ using Wiener

covariance function, based on log-transformed data on the left, re-transformed on

the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.8 Gen0: Wiener candidate covariance function P0 and the estimated phenotypic

covariance function P̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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1. Introduction

Evolutionary biology concerns itself with the change of physical traits between generations.

These traits are also called phenotypes. In classical evolutionary biology, a vector-valued or

finite-dimensional trait z is a trait that can be represented by a finite vector (z1, . . . , zn), where

the zi is the ith component that contributes to an individual’s phenotype. Examples are the

crop yield of a plant, the amount of milk produced by a cow, or the height and weight of an

individual at some critical age.

However, often traits such as growth trajectories, morphological shapes like the shape of a

wing, or reaction norms, i.e. traits that react to environmental variables, as for example the

speed of lizards depending on the ambient temperature, are of interest. Therefore it makes more

sense to describe those phenotypes by continuous functions. Such traits are called function-

valued traits, denoted by {z(t) : t ∈ T}, where T could represent time when describing growth,

or angles and distances when talking about shapes, or temperature that influences reaction.

Due to continuity of those functions, describing a function-valued trait would take infinitely

many measurements, hence the alternative name infinite-dimensional trait, and traits like these

are treated are modeled by stochastic processes rather than random variables. In their paper of

1989, Kirkpatrick and Heckmann [12] define a quantitative genetic model for infinite-dimensional

traits, which is the basis for all future computation.

The evolutionary change of the mean of traits, whether finite-dimensional or function-valued, is

subject to selection between generations. This evolutionary response to selection is characterized

by the selection gradient β. Information on the selection gradient can be obtained by analyzing

the fitness function W of a trait. In the vector-valued case, the selection gradient β is a finite-

1
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dimensional vector that can be estimated by regressing observed fitness on observed traits. In

the framework of reproducing kernel Hilbert spaces and Gaussian processes the definition of the

selection gradient is extended to function-valued traits by Beder and Gomulkiewicz [10] and

further computational methods were developed.

This thesis is structured in the following way. Chapter 2 takes a look at finite-dimensional

traits and derives the selection gradient for this case. Chapter 3 focuses on reproducing kernel

Hilbert spaces and Gaussian processes, as they are important for the estimation of the selection

gradient for infinite-dimensional traits. The definition of this special kind of Hilbert space and

how Gaussian processes are connected to them will be introduced. In particular, the Gaussian

Dichotomy Theorem will be stated, since it gives necessary and sufficient conditions for the

equivalence of Gaussian probability measures. This is an important cornerstone for the estima-

tion of the selection gradient. Chapter 4 will make use of this theory, extending the idea of the

selection gradient from Chapter 2 to infinite-dimensional traits. Built on the knowledge from the

previous chapters, Chapter 5 gives estimators for all functions of interest introduced in Chapter

4, in particular for the estimation of the pre-selection and next-generation mean functions z̄ and

z̄′, as well as for the phenotypic covariance function P . Furthermore, one distinguishes between

a sample of all independent observations, and a sample of independent families of equally related

organisms. Following this, in Chapter 6, the estimation methods are applied to real-life data on

Tribolium Castaneum larvae. Estimates of the pre-selection mean, the evolutionary response

to selection which dictates the next-generation mean, and the phenotypic covariance function

are computed. Even though it plays an essential role, the selection gradient β is not explicitly

estimated, as it is an functional and therefore cannot be illustrated alone, as well as the fact

that it is contained in the estimation of the evolutionary response to selection. The results are

discussed and alternative approaches are discussed in Chapter 7. Finally, in the last chapter, all

results of this thesis will be summarized and suggestions on open questions will be stated.

2
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2. Finite-dimensional Traits

In this chapter, the necessary biological terminology for this thesis and results of classical evolu-

tionary biology are introduced. An observable physical trait is called a phenotype. The genetic

makeup of an organism on the other hand is called genotype. The analysis of evolutionary

changes between generations has to rely on the observation of phenotypes, as it is in general not

possible to observe genotypes.

The selection gradient β, which characterizes the evolutionary response to selection, will be

defined for finite-dimensional traits. The Breeder’s Equation, which relates the means of the

phenotypes in the parent and offspring generation, as well as the Robertson-Price Identity,

which puts the fitness W of an organism into relation with the selection gradient β, are essential

results for the estimation of β.

Remark 2.1.(Conventions) This thesis will follow the conventional notation of evolutionary

biologists as close as possible. Like Beder and Gomulkiewicz [9], the following notation is used.

In a mathematical sense, the terms trait and phenotype are regarded as a random variable and

its realization, respectively. Denote column vectors z and matrices P by boldface characters and

the transpose by T . The multivariate normal distribution with mean µ and covariance matrix

Σ is denoted by N(µ,Σ).

In the context of evolutionary biology, every generation’s mean is denoted differently:

z̄ = mean of the trait z among newborns of the current generation before

selection (pre-selection mean),

z̄∗ = mean of the trait z of the current generation (after selection),

3
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2. Finite-dimensional Traits

z̄′ = mean of the trait z among newborns of the following generation

The notation z̄, i.e. the mean of a z, refers to the expected value of z, not the arithmetic mean.

The probability density of each generation is indexed by the corresponding mean, e.g. pz̄ is the

probability density of the trait among newborns of the current generation before selection, i.e.

the pre-selection mean.

Furthermore, to establish a genetic model, it is assumed that evolution proceeds in two steps.

(1) Selection determined by the fitness (also survivorship) of each individual, and

(2) Inheritance controlled by mating patterns and genetics of the breeding adults (survivors

after selection).

Lastly, it is assumed that traits are autosomally inherited. This means that any effects of random

genetic drift, mutation, epistasis1 or recombination are neglected.

Let z be a finite-dimensional trait of an individual. We may decompose z as the sum of two

uncorrelated random variables (vectors),

z = g + e, (2.1)

where g represents the additive-genetic component of the trait inherited by the parents and

e represents environmental effects. In a sample, zi = gi + ei denotes the trait of the ith

individual. Since all individuals are assumed to live in similar and independent environments,

the environmental effects ei are all independent and identically distributed. The pre-selection

distribution is assumed to be normal with mean z̄ and (phenotypic) covariance matrix P. As

described before, pz̄ denotes the pre-selection density.

In this model, the phenotypic covariance matrix P of a trait can be decomposed into the sum

of a additive-genetic covariance matrix G and an environmental covariance matrix E,

P = G + E, (2.2)

1Dependence between genes.

4
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each corresponding to the respective component of the trait.

The fitness W (z) of an individual with trait z (or just W if the circumstances are clear) is a

random variable fulfilling the following assumptions:

(i) W > 0

(ii) Varz̄ [W ] <∞ for all z̄ ∈ Rn.

We define the relative fitness w by the quotient

w(z) =
W (z)

Ez̄ [W ]
, (2.3)

and the post-selection density pz̄∗ is given by

pz̄∗ = w(z)pz̄ =
W (z)pz̄
Ez̄ [W ]

. (2.4)

Note that the assumptions made on W guarantee that pz̄∗ is a positive function and integrates to

1, and therefore a probability density. The pre-selection distribution is assumed to be N(z̄,P).

Observe that the post-selection distribution does not necessarily have to be normal.

The selection differential, which describes the within-generation change in the mean trait, i.e.

the changes from pre-selection to post-selection, is

s = z̄∗ − z̄. (2.5)

The evolutionary response to selection, or between-generation change in the mean trait, i.e.

changes between the newborns of successive generations, is defined by

∆z̄ = z̄′ − z̄. (2.6)

Under the assumption that the trait z before selection is normally distributed with mean z̄ and

covariance matrix P, the Breeder’s Equation holds and describes the evolutionary response to

5
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selection as

∆z̄ = GP−1s. (2.7)

The breeder’s equation directly connects the between-generation change to the within-generation

change. In this the selection gradient β is defined by

β = P−1s. (2.8)

Thus, equation (4.8) can be written as

∆z̄ = Gβ. (2.9)

The ith component of the selection gradient, βi, describes the force of directional selection on

the ith component of the trait. The estimation of β relies on knowledge about the post-selection

mean z̄∗, as it is part of the computation of the selection differential s. Unfortunately, z̄∗ is

in general hard to determine (and thus so is s) except for fully artificially conducted selection.

Lande extended the model to natural populations and proved that β can be estimated without

any information on the post-selection distribution.

Theorem 2.2.(Lande’s Theorem, [9] Theorem 1) Let z be a trait with pre-selection distri-

bution N(µ,P), where the phenotypic covariance matrix P is positive-definite. If the fitness W

is frequency independent, i.e. W is independent of z̄ or any other parameter of the pre-selection

distribution, then

β = P−1s = ∇z̄ log (Ez̄W ) (2.10)

where ∇z̄ =
(

∂
∂z̄1

, . . . , ∂
∂z̄n

)
is the vector gradient operator at z̄.

Note that Lande’s theorem presumes that differentiating under the integral sign ([9] Regu-

larity Condition) is allowed. It follows that the evolutionary response to selection can then be

computed by

∆z̄ = G∇z̄ log (Ez̄W ) . (2.11)

6
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In addition, the selection gradient β can also be viewed as the vector of regression coefficients

of a partial regression of the relative fitness w on the trait z. In the following denote E = Ez̄.

Consider ŵ to be the best linear predictor of w based on z. Then ŵ fulfills

(i) ŵ = β0 + βTz = β0 +
n∑
j=1

βjzj ,

(ii) ŵ minimizes E
[
(w − ŵ)2

]
over all ŵ′ that satisfy (i).

To solve for β0 and β, note that ŵ is the orthogonal projection of w into the vector space

of random variables spanned by 1, z1, . . . , zn (1 is the degenerate random variable at 1) with

respect to the inner product (x, y) = E [xy]. It can be easily verified that w − ŵ is orthogonal

to 1, z1, . . . , zn, i.e.

(w − ŵ, 1) = 0, (2.12)

(w − ŵ, zi) = 0 for all i = 1, . . . , n. (2.13)

Hence, following equation (2.12) and property (i) of ŵ

E [w] = E [ŵ] = β0 +

n∑
j=1

βjE [zj ] (2.14)

and from the equations (2.13) one concludes

E [ziw] = E [ziŵ] = β0E[zi] +
n∑
j=1

βjE [zizj ] for all i = 1, . . . , n. (2.15)

Consequently, β0 and β are the solution of the following system of equations



1 E[z1] E[z2] · · · E[zn]

E[z1] E[z2
1 ] E[z1z2] · · · E[z1zn]

E[z2] E[z2z1]
. . . · · · E[z2zn]

...
...

...
. . .

...

E[zn] E[znz1] · · · · · · E[z2
n]





β0

β1

β2

...

βn


=



E[w]

E[z1w]

E[z2w]

...

E[znw]


(2.16)

7
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Following the same chain of thoughts, but regressing w on z−z̄ instead, the best linear predictor

of w on z − z̄ satisfies

(i) ŵ = β0 + βT (z − z̄) = β0 +
n∑
j=1

βj(zj − z̄j),

(ii) ŵ minimizes E
[
(w − ŵ)2

]
over all ŵ′ that satisfy (i).

Note, that z̄i is the mean of the ith component of the trait z. ŵ is the orthogonal projection of

w into the vector space of random variables with basis 1, z1− z̄1, . . . , zn− z̄n with respect to the

inner product (x, y) = E[xy]. Similar to equations (2.14) and (2.15), it follows that

E [w] = E [ŵ] = β0 +
n∑
j=1

βj E [zj − z̄j ]︸ ︷︷ ︸
=0

= β0, (2.17)

E [(zi − z̄i)w] = E [(zi − z̄i)ŵ] = β0 E[zi − z̄i]︸ ︷︷ ︸
=0

+
n∑
j=1

βjE [(zi − z̄i)(zj − z̄j)]

Cov(zi, w) =
n∑
j=1

βjCov(zi, zj) for all i = 1, . . . , n, (2.18)

i.e. β0 and β fulfill



1 0 · · · 0

0 Cov(z1, z1) · · · Cov(z1, zn)

...
...

. . .
...

0 Cov(zn, z1) · · · Cov(zn, zn)





β0

β1

...

βn


=



E[w]

Cov(z1, w)

...

Cov(zn, w)


1 0T

0 P


β0

β

 =

 E[w]

Cov(z, w)

 . (2.19)

Separating this, it holds that

β0 = E[w] and Pβ = Cov(z, w). (2.20)

Consequently, by using the Robertson-Price Identity, which states that the selection differential

8
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2. Finite-dimensional Traits

s is equal to the covariance between the trait z and its fitness w,

Pβ = s. (2.21)

9
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3. Reproducing Kernel Hilbert Spaces

3.1. Reproducing Kernel Hilbert Spaces

The theory of reproducing kernel Hilbert spaces (RKHS) appears in many fields of Mathemat-

ics, for example in complex analysis, harmonic analysis and quantum mechanics. Reproducing

kernels and the reproducing property were first introduced by Zaremba1 in 1907 in his work on

harmonic functions, and later Bergman2 discovered the reproducing property of kernels built

by orthogonal systems of harmonic and analytic functions. Bergman and Aronszjn3 eventually

systematically developed this subject.

Especially in the recent past, reproducing kernel Hilbert spaces have become more and more

important in Probability and Mathematical Statistics. In this chapter, the theory of reproduc-

ing kernel Hilbert spaces is introduced, as they are closely related to stochastic processes. In

particular, the Gaussian dichotomy theorem is stated and its importance in the estimation of

the selection gradient portrayed. A more detailed look on this matter is presented in Berlinet

and Thomas-Agnan’s book on RKHS [3].

Definition 3.1.(Hilbert Space) A real or complex vector space H is called Hilbert space

1Stanislaw Zaremba, 1863 -1942, Polish mathematician and engineer.
2Stefan Bergman, 1895 - 1977, Polish American mathematician.
3Nachman Aronszjn, 1907 - 1980, Polish American mathematician.

10



www.manaraa.com

3.1. Reproducing Kernel Hilbert Spaces

defined by the inner product

〈·, ·〉H : H×H −→ R or C

(ϕ,ψ) 7−→ 〈ϕ,ψ〉H , (3.1)

if it is complete with respect to the norm induced by the inner product

‖ϕ‖H =
√
〈ϕ,ϕ〉H , (3.2)

i.e. every Cauchy sequence in H converges.

Definition 3.2.(Reproducing Kernel) For an arbitrary set T and a Hilbert space H of

functions on T , the function K on T × T ,

K : T × T −→ R or C

(s, t) 7−→ K (s, t) (3.3)

is called reproducing kernel of the Hilbert space H if and only if it satisfies

(i)

Kt = K(·, t) ∈ H for all t ∈ T, (3.4)

(ii)

〈f,Kt〉H = f(t) for all f ∈ H and t ∈ T. (3.5)

The Hilbert space H is then called reproducing kernel Hilbert space, which is often also denoted

by H (K,T ) or H (K).

Remark 3.3. Equation (3.5) defines the so-called reproducing property, since any function f ∈

H can be evaluated, or reproduced, at a point t ∈ T by the inner product of f with Kt.

11
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3.1. Reproducing Kernel Hilbert Spaces

Furthermore, from properties (i) and (ii)

K (s, t) = 〈K (·, t) ,Ks〉H = 〈Kt,Ks〉H (3.6)

follows immediately.

Example 3.4.([3] Example 1, pp. 4-5, 7-8) Let H be a finite dimensional complex vector

space of functions on T with basis (f1, . . . , fn). Since this is a basis ofH it is possible to represent

any vector inH as a linear combination of the basis vectors f1, . . . , fn. Consider vectors v, u ∈ H.

Then

v =

n∑
i=1

λifi, u =

n∑
j=1

µjfj

where the λi, µj ∈ C, i, j = 1, . . . , n are complex coefficients. The inner product 〈v, u〉H is

completely determined by values

gij = 〈fi, fj〉H for i, j = 1, . . . , n (3.7)

since

〈v, u〉H = 〈
n∑
i=1

λifi,
n∑
j=1

µjfj〉H =
n∑
i=1

n∑
j=1

λiµj〈fi, fj〉H
(3.7)
=

n∑
i=1

n∑
j=1

λiµjgij . (3.8)

Note that the matrix G = [gij ]i,j=1,...,n is called Gram matrix of the basis.

Since H is finite dimensional and equipped with the norm ‖ϕ‖H =
√
〈ϕ,ϕ〉H, it is complete

with respect to that norm, and H is a Hilbert space.

Further developing our example of H to a finite dimensional Hilbert space of functions on T ,

consider an orthonormal basis (e1, . . . , en) in H. Define a function K on T × T by

K(s, t) =

n∑
i=1

ei(s)ei(t) for all s, t ∈ T. (3.9)

12



www.manaraa.com

3.1. Reproducing Kernel Hilbert Spaces

Then for any t ∈ T

K(·, t) =

n∑
i=1

ei(·)ei(t) (3.10)

is a function in H. Additionally, for any function ϕ ∈ H,

ϕ(·) =

n∑
i=1

λiei(·), (3.11)

the following holds:

〈ϕ(·),Kt〉 =
〈 n∑
i=1

λiei(·),
n∑
j=1

ej(t)ej(·)
〉

=

n∑
i=1

n∑
j=1

λiei(t) 〈ei(·), ej(·)〉︸ ︷︷ ︸
=

1, if i = j

0, otherwise.

=
n∑
i=1

λiei(t) = ϕ(t). (3.12)

Thus, both properties (i) and (ii) of Definition 3.2 are satisfied and K is a reproducing kernel,

making H a reproducing kernel Hilbert space.

Example 3.5.(Cont’d; [3] Theorem 14, p. 32) An extension of Example 3.4 is given in [3]

Theorem 14. Let H be a separable Hilbert space of complex-valued functions on T, i.e. H has

countable dimension. Let K be the reproducing kernel. Then for any complete orthonormal

system (ei)i∈N

K(s, t) =

∞∑
i=1

ei(s)ei(t) for all s, t ∈ T, (3.13)

and

K(·, t) =

∞∑
i=1

ei(·)ei(t) for all t ∈ T. (3.14)

Conversely if (3.14) holds for orthonormal system (ei)i∈N then this system is complete and H is

separable. The proof of this theorem is stated in [3].

Even though all results of this section are given for complex functions, henceforth we will only

consider H to be Hilbert space of real-valued functions on an arbitrary domain T and denote

by 〈·, ·〉H the associated inner product.

13
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3.2. Stochastic Processes

3.2. Stochastic Processes

Before stating the Gaussian Dichotomy Theorem, which plays a central role in estimating the

selection gradient of function-valued traits, it is important to define the necessary foundation on

which this theory is constructed. In this section, we will define stochastic processes, in particular

Gaussian processes, and establish how they are connected to reproducing kernel Hilbert spaces.

Definition 3.6.(Stochastic Process) A stochastic process {Zt : t ∈ T} on the probability

space (Ω,A,P) is a family of real-valued random variables on Ω. We say, the stochastic process

{Zt : t ∈ T} is of p-th order if

EP|Zt|p <∞ for all t ∈ T, (3.15)

where the expected value with respect to the probability measure P is defined by

EP [·] =

∫
Ω

· dP. (3.16)

Remark 3.7. A stochastic process {Zt : t ∈ T} is called Gaussian process if and only if for any

finite set of indices t1, . . . , tn ∈ T , the random vector (Zt1 , . . . , Ztn) is multivariate Gaussian,

i.e. any finite linear combination of the random variables Zt1 , . . . , Ztn has a normal distribution.

The process {Zt : t ∈ T} is additionally called a zero mean Gaussian process if E [Zt] = 0 for all

t ∈ T .

Definition 3.8.(Covariance Kernel) Let T be an arbitrary set and K be a real-valued function

on T × T . The function K is called covariance kernel if it is

(i) Symmetric:

K(s, t) = K(t, s) for all s, t ∈ T (3.17)

(ii) Positive definite: For all finite sets of indices t1, . . . , tn ∈ T and for all vectors x ∈ Rn,x =

14
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3.2. Stochastic Processes

[x1, . . . , xn]
n∑
i=1

n∑
j=1

xixjK (ti, tj) ≥ 0 (= 0⇔ x = 0). (3.18)

Remark 3.9. For a stochastic process of second order {Zt : t ∈ T}, the mean function µ(·) and

the covariance function K(·, ·) exist and are defined by

µ(t) = EP [Zt] (3.19)

K(s, t) = Cov(Zs, Zt) = EP [(Zs − µ(s)) (Zt − µ(t))] . (3.20)

Let K be the covariance function of a second order stochastic process {Zt : t ∈ T}. Then

K fulfills both conditions that are defining a covariance kernel. K is symmetric and positive

definite,

Cov(Zs, Zt) = Cov(Zt, Zs) for all s, t ∈ T, (3.21)

n∑
i=1

n∑
j=1

aiajCov(Zti , Ztj ) = V ar

(
n∑
i=1

aiZti

)
≥ 0, (3.22)

and it follows that K is a covariance kernel. Furthermore, any second order stochastic process

is contained in the function space L2 (Ω,A,P).

Definition 3.10.(Gaussian Space) Define the space of stochastic processes spanned by {Zt :

t ∈ T} by

V =

{
X ∈ L2 (Ω,A,P) : X =

n∑
i=1

λiZti , n ∈ N, λ1, . . . , λn ∈ R, t1, . . . , tn ∈ T

}
. (3.23)

Clearly V is contained in L2 (Ω,A,P) and the closure of V , denoted by H = V ∈ L2 (Ω,A,P),

is called the Hilbert space spanned by the process {Zt : t ∈ T}. H is the smallest Hilbert

space in L2 (Ω,A,P) that contains {Zt : t ∈ T}. If the stochastic process {Zt : t ∈ T} is

Gaussian, then H is called the Gaussian space associated to {Zt : t ∈ T}. Furthermore denote

by B(H) = B(Zt : t ∈ T ) the σ-algebra generated by the process {Zt : t ∈ T} and P-negligible

sets.

15
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3.3. The Gaussian Dichotomy Theorem

A key property of second order stochastic processes and reproducing kernel Hilbert spaces is

stated in the following.

Proposition 3.11.([16] Proposition 3.2, [1] Proposition 2.1.1) Let {Zt : t ∈ T} be a zero

mean Gaussian process on the probability space (Ω,A,P) with covariance function K and let

H be the Gaussian space associated to the process. There exists a unique reproducing kernel

Hilbert space with kernel K consisting of functions defined on T . This reproducing kernel Hilbert

space H(K) and the Gaussian space H are isomorphic via the isometry Λ : H → H(K) defined

by

Λ(Y ) [t] = EP [Y Zt] for all Y ∈ H. (3.24)

This map is called the Loève map. Note that the Loève map has the key property

Λ(Zs) = Ks, (3.25)

where Ks = K(·, s) is a section of the covariance kernel K at s ∈ T . This is true not only for

zero mean Gaussian processes, but also for any second order stochastic process.

3.3. The Gaussian Dichotomy Theorem

The Gaussian Dichotomy Theorem plays a central role in estimating the mean and covariance

function of Gaussian processes.

Definition 3.12.(Singular and equivalent measures, [18] Definition 6.7) Let µ and ν be

measures on the same measurable space (Ω,A).

We say µ is absolutely continuous with respect to ν, µ� ν, if

ν(N) = 0 =⇒ µ(N) = 0, (3.26)

that is, every nullset N ∈ A of ν is a nullset of µ as well. The measures µ and ν are called

16
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3.3. The Gaussian Dichotomy Theorem

equivalent if and only if they are absolute continuous with respect to each other:

µ(N) = 0⇐⇒ ν(N) = 0, (3.27)

in other words, µ and ν have the same nullsets. The equivalence of two measures is denoted

µ ≈ ν.

Let A ∈ A be a set. The measure µ is concentrated on A if

µ(E) = µ(A ∩ E) for all E ∈ A, (3.28)

equivalently

A ∩ E = ∅ =⇒ µ(E) = 0. (3.29)

Two measures µ and ν are (mutually) singular if there exists a pair of disjoints subsets A,B ⊂ Ω

such that µ is concentrated on A and ν is concentrated on B. We write µ ⊥ ν.

Theorem 3.13.(The Gaussian Dichotomy Theorem Part 1, [16] Proposition 8.1, [1]

Theorem 2.2.1) Let {Zt : t ∈ T} be a Gaussian process defined on (Ω,A,P) with mean zero

and covariance function K. Let H be the Gaussian space associated to the process. Furthermore,

assume A = B(H).

Then any probability measure Q on (Ω,A) such that {Zt : t ∈ T} is a Gaussian process with

covariance function K, is either singular or equivalent to P. For Q and P to be equivalent, it is

necessary and sufficient that there exists a random variable Y ∈ H such that

EQ [Zt] = EP [Y Zt] for all t ∈ T. (3.30)

Equivalently, it is necessary and sufficient that the mean function µQ(·) = EQ [Z·] of the process

{Zt : t ∈ T} belongs to the reproducing kernel Hilbert space H(K).

If these conditions are fulfilled, the Radon-Nikodym derivative of Q with respect to P on

17
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3.3. The Gaussian Dichotomy Theorem

(Ω,A,P) is given by

dQ

dP
= exp{Y − 1

2
EP

[
Y 2
]
}. (3.31)

Conversely, for any Y ∈ H, the process {Zt : t ∈ T} is Gaussian with respect to the probability

measure Q on (Ω,A) defined by Y , i.e.

dQ = exp{Y − 1

2
EP

[
Y 2
]
}dP (3.32)

and Q ≈ P . The mean function of {Zt : t ∈ T} is then given by µQ(·) = EQ [Z·] = EP [Y Z·] and

the covariance function is K.

As the full second part of the Gaussian Dichotomy Theorem does not play a major role in the

estimations of interest, only a shortened version will be stated. The full version can be found in

the sources cited.

Theorem 3.14.(The Gaussian Dichotomy Theorem Part 2, [16] Proposition 8.6, [1]

Theorem 2.2.1) Let {Zt : t ∈ T} be a zero mean Gaussian process on the probability space

(Ω,A,P) where A = B(H). Denote by KP and H the covariance function as well as the Gaussian

space associated to this process.

Let Q be a another probability measure on the same space which endows {Zt : t ∈ T} with

a zero mean Gaussian distribution and let KQ be the covariance function with respect to Q.

Then the probability measures P and Q are either singular or equivalent. For Q and P to be

equivalent, it is necessary and sufficient that

KQ(s, t)−KP(s, t) =
∑
k

akgk(s)gk(t) for all s, t ∈ T. (3.33)

where {gk} is an orthonormal system in the reproducing kernel Hilbert space H(KP)

18
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3.4. Sieve Estimation

In his thesis [1], Baur illustrates how the Gaussian Dichotomy Theorem is used to estimate

covariance functions and the importance of sieve estimators. At this point, only the results shall

be mentioned.

Let {Zt : t ∈ T} be a stochastic process on the measure space (Ω,A). Consider the space Q

of probability measures such that

(1) the process {Zt : t ∈ T} is a zero mean Gaussian process under every probability measure

Q ∈ Q,

(2) all probability measures Q ∈ Q are equivalent,

(3) the true probability measure belongs to Q

Under these conditions, for any arbitrary P ∈ Q, {Zt : t ∈ T} is a zero mean Gaussian process

with covariance function KP and associated Gaussian space HP. Denote HP the reproducing

kernel Hilbert space with kernel KP and ΛP : HP −→ HP the associated Loève map.

By the Gaussian Dichotomy theorem, it follows for each Q ∈ Q that there exists a countable

orthonormal sequence {gk} in the RKHS HP and a sequence {ak}, with
∑
k

a2
k <∞ and inf

k
ak >

−1, such that

KQ = KP +
∑
k

akgk ⊗ gk, (3.34)

where the operation f ⊗ g defines a function on T × T with (f ⊗ g)(s, t) = f(s)g(t). Thus,

equation (3.34) essentially has the form

KQ(s, t) = KP(s, t) +
∑
k

akgk ⊗ gk(s, t)

= KP(s, t) +
∑
k

akgk(s)gk(t). (3.35)

The sequences {gk} and {ak} both depend on the measure Q ∈ Q. Following equation (3.34),
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define the set of covariance functions

K =
{
KQ = KP +

∑
k

akgk ⊗ gk : {gk} ⊂ HP countable and orthonormal,

{ak} with
∑
k

a2
k <∞ and inf

k
ak > −1

}
. (3.36)

Furthermore, there is a countable orthonormal sequence {Uk} in the Gaussian space HP and a

sequence {λk}, with {−λk} fulfilling the same conditions as {ak}, such that the Radon-Nikodym

density of Q with respect to P is given by

dQ

dP
= exp

{1

2

∑
k

(
λkU

2
k + ln(1− λk)

)}
, (3.37)

where (1− λk)(1 + ak) = 1 and the random variables Uk are the solution of gk = ΛPUk.

Definition 3.15.(Sieve Estimator) Let Q = {Pθ : θ ∈ Θ} be a dominated family of distribu-

tions, that means, every measure Pθ is absolute continuous with respect to some measure µ. A

sieve in the parameter space Θ is a collection {Sd} of subsets of Θ indexed by a so-called sieve

parameter d with the properties

(i) d′ > d implies that Sd′ ⊃ Sd,

(ii) the union over all subsets Sd is dense in Θ,

(iii) the likelihood can be maximized at θ̂d for each Sd for some sample of size n.

The estimator θ̂d over each Sd is called sieve estimator of θ with sieve parameter d.

Finding a sieve in K is rather difficult, as both the sequence of orthonormal functions {gk}

as well as the sequence {ak} are variable, making K very large. Therefore, by fixing a complete

orthonormal sequence {gk}, a subset K0 ⊂ K is considered,

K0 =
{
KQ = KP +

∑
k

akgk ⊗ gk : {ak} with
∑
k

a2
k <∞ and inf

k
ak > −1

}
. (3.38)
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Finding a sieve estimator in K0 requires finding a sieve estimator â in

`2c =
{
a = {ak} :

∑
k

a2
k <∞ and inf

k
ak > −1

}
. (3.39)

The collection {Sd : d ∈ N} with

Sd = {a = {ak} ∈ `2c : ak = 0 for all k > d} (3.40)

is a sieve in `2c . The sieve estimator â = ân,d = {ak}k∈N is given by

âk =


S2
k − 1 , for k ≤ d

0 , otherwise

, (3.41)

where S2
k = 1

n

n∑
i=1

U2
ki. As a result, the sieve estimator for KQ in K0 has the form

K̂Q = KP +
∑
k

âkgk ⊗ gk. (3.42)
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4. Infinite-dimensional Traits

4.1. The Quantitative Genetic Model for Infinite-dimensional Traits

Analogous to chapter 2, the selection gradient will be defined for function-valued traits. Nota-

tions follow the conventions specified in Remark 2.1 for most part. A function-valued trait is a

stochastic process {z(t) : t ∈ T}, often also {zt : t ∈ T}, where T is for example a set of time,

temperatures, or other environmental variables. For ease of notation, function-valued traits are

often simply denoted z(t). The phenotype of an individual is a realization of {z(t) : t ∈ T},

i.e. a sample path. The pre-selection mean is denoted z̄(t). The post-selection mean is given by

z̄∗(t) and z̄′(t) is the mean function of the trait among newborns of the next generation. The

distribution before selection, after selection and the distribution of the offspring generation are

Pz̄, Pz̄∗ and Pz̄′ respectively.

Similar as for finite-dimensional traits, the infinite-dimensional model decomposes a function-

valued trait z(t) into a sum

z(t) = g(t) + e(t) , (4.1)

where {g(t) : t ∈ T} is a stochastic process describing the additive-genetic factor in the trait, i.e.

inheritance from the parents, and the process {e(t) : t ∈ T} represents environmental effects. It

is assumed that there is no correlation between environmental and genetic factors, and therefore

the phenotypic covariance function P (s, t) for s, t ∈ T breaks down as

P (s, t) = G(s, t) + E(s, t) , (4.2)
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where G(s, t) is the additive-genetic covariance function and E(s, t) is the environmental covari-

ance function.

The fitness W (z), or just W , of a function-valued trait is assumed to be a function that

satisfies the following properties:

(i) W is a positive function

(ii) Ez̄[W ] <∞ and Ez̄[z(t)W ] <∞ for all t ∈ T.

The fitness might depend on z̄(t) or other parameters of the pre-selection distribution Pz̄. If W

is independent of those, we say W is frequency-independent. The relative fitness

w =
W

Ez̄[W ]
(4.3)

defines the post-selection distribution by

dPz̄∗ = wdPz̄ =
W

Ez̄[W ]
dPz̄. (4.4)

Note that Pz̄∗ is a probability measure and absolutely continuous with respect to the pre-selection

distribution Pz̄.

Similar as for vector-valued traits, the selection differential s is defined as a function on T ,

s(t) = z̄∗(t)− z̄(t) , (4.5)

and represents the change in the mean function of the trait within a generation, i.e. the change

between pre-selection mean and post-selection mean. The evolutionary response to selection ∆z̄,

that is the change of the mean among newborns of successive generations, is

∆z̄(t) = z̄′(t)− z̄(t). (4.6)

In the following it is assumed that
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(i) the trait z(t) is Gaussian with mean z̄(t) and phenotypic covariance function P (s, t), s, t ∈

T . In particular, z̄ belongs to the reproducing kernel Hilbert space H(P, T ).

(ii) The fitness W > 0 almost surely with respect to the probability measure Pz̄ and belongs

to L2(Ω,A,Pz̄) for all z̄ ∈ H(P, T ). That is,

V arz̄(W ) <∞ for all z̄ ∈ H(P, T ). (4.7)

Since it is hard to gather information on the distribution or the newborns of the next generation,

in particular on z̄′, no inference can be made on the evolutionary response to selection, ∆z̄. Kirk-

patrick and Heckmann state that the Breeder’s Equation is applicable for infinite-dimensional

traits, thus

∆z̄(t) = GP−1s(t), (4.8)

with G and P being integral operators with kernel G(s, t) and P (s, t), respectively. Integral

operators will be defined in the next subsection on restrictions on T and the covariance functions.

Lastly, the selection gradient is then defined by

β(t) = P−1s(t). (4.9)

The Breeder’s equation is dependent on the selection differential, which is in general hard to

compute. Information on the post-selection mean z̄∗ is not observable in the field, except for

in artificially controlled breeding environments. The Robertson-Price Identity, stated later, will

be a useful tool to overcome this obstacle.

Remark 4.1. The selection gradient β given in equation (4.9) is only defined if the selection

differential s belongs to the range of P. To give a proper definition of the selection gradient for

the case s /∈ P, an extension P̄ of the integral operator P can be found. Technically this means,

the selection gradient β is the solution of the equation

P̄β = s (4.10)
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(see [1] Section 3.2.2).

Similar to Lande’s Theorem for finite-dimensional traits, see Theorem 2.2, it is possible to

define the selection gradient β as the functional gradient of log (Ez̄W ) at z̄. A detailed view on

this can be found in [9], Section 4.3.

4.2. Restrictions on T and the Covariance Functions

Beder and Gomulkiewicz [9], Section 3.3, give restrictions on the set T and the covariance

function P .

(i) The set T is assumed to belong to a measure space with σ-algebra T and measure µ.

Furthermore, µ is a σ-finite measure, i.e. every A ∈ A is the countable union of sets

An ∈ A, n ∈ N, with finite measure. This means for all A ∈ A there exists a sequence

(An)n∈N ⊂ A with µ(An) <∞ for all n ∈ N, such that A =
⋃
n∈N

An.

(ii) P is a measurable covariance kernel on T × T with finite trace, i.e.

∫
T

P (t, t)dµ(t) <∞. (4.11)

(iii) The zero function on T is the only µ-negligible function in the reproducing kernel Hilbert

space H(P, T ).

A simple example of T and P that satisfy assumptions (i), (ii) and (iii) is given by any interval

T = [a, b] on the real line and continuous function P . Further results following the conditions

above can be found in [9], Section 3.3.

Definition 4.2.(Integral Operator) Let f be a square-integrable function on T . The integral

operator P is defined by

Pf(s) =

∫
T

P (s, t)f(t)dµ(t). (4.12)

P (s, t) is called the kernel of the integral operator P.
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Proposition 4.3.(Robertson-Price Identity for Function-valued Traits) Under the as-

sumptions made above, the selection differential s(t) is given by

s(t) = Covz̄(z(t), w). (4.13)

Proof. Let all expected values be computed with respect to Pz̄. It holds

Cov(z(t), w) = E[z(t)w]− E[z(t)]E[w]. (4.14)

Since the relative fitness w is defined by w = W
E[W ] , its expected value is E[w] = E

[
W

E[W ]

]
= 1.

Moreover, by convention, E[z(t)] is denoted by z̄(t).

Using the relationship between the pre-selection distribution Pz̄ and post-selection distribution

Pz̄∗ given by equation (4.4), compute

E[z(t)w] =

∫
z(t)wdPz̄ =

∫
z(t)dPz̄∗ = z̄∗(t). (4.15)

Hence, the covariance of z(t) and w is

Cov(z(t), w) = z̄∗(t)− z̄(t) = s(t). (4.16)

Proposition 4.4.([2] Proposition 2.2, [1] Proposition 3.2.2) Let P0 and P be equivalent

probability measures with covariance kernels P0 and P , and corresponding integral operators

P′,P, respectively. Let {gk} be an orthonormal sequence in the reproducing kernel Hilbert space

H(P0) and let {γk} be a sequence of functions such that P0γk = gk for all k. Then

(γk, gk) = δjk =


1 , if j = k,

0 , if j 6= k

, (Kronecker δ), (4.17)
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where (·, ·) is the inner product in L2(T ), i.e. (f, g) =
∫
T

f(t)g(t)dt.

Furthermore, if the covariance function P and the selection gradient β are of the form

P = P0 +
∑
k

akgk ⊗ gk (4.18)

β =
∑
k

bkγk, (4.19)

as well as, if the selection differential has the expansion s =
∑
k

ckgk, then

P̄β = s (4.20)

if and only if the coefficients ak, bk, ck satisfy

bk =
ck

ak + 1
. (4.21)

27



www.manaraa.com

5. Estimating the Selection Gradient β for

Infinite-dimensional Traits

This chapter deals with the actual estimation of the selection gradient β for function-traits, in

particular estimators for the phenotypic covariance function P , the mean functions among the

newborns of the parent generation z̄ and the offspring generation z̄′, respectively, as well as all

necessary quantities of the estimation will be defined. A rigorous derivation is disclosed in [1],

so that, here, this thesis will only focus on its results.

5.1. Independent Case

Assume that all observed individuals are bred independently under identical conditions. Let

(Ω,A) be a measurable space and {z(t) : t ∈ T} a stochastic process on (Ω,A). Denote by

Pz̄ the distribution which endows {z(t) : t ∈ T} with a Gaussian distribution with mean z̄

and covariance function Pz̄. Likewise P and P0 endow the process with a zero mean Gaussian

distribution and covariance functions P and P0, respectively.

As specified in the previous chapter, the selection gradient β is the solution of equation (4.10),

i.e.

P̄β = s (5.1)

where P̄ is the extension of the integral operator P whose kernel is the covariance function P .

For ease of notation, this extension will simply be denoted P.
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Let {gk} be a complete orthonormal sequence in H(P0) and let {γk} be a sequence satisfying

P0γk = gk. Furthermore, it is assumed, that the covariance function P , the selection gradient β

and the selection differential s satisfy the prerequisites of Proposition 4.4, that is to say

P = P0 +
∑
k

akgk ⊗ gk, (5.2)

β =
∑
k

bkγk, (5.3)

s =
∑
k

ckgk. (5.4)

Then, by the same proposition, estimates P̂ and ŝ are determined by the estimation of the

coefficients ak and ck, denoted âk and ĉk, from which it is possible to estimate

b̂k =
ĉk

âk + 1
. (5.5)

5.1.1. Estimating the Phenotypic Covariance Function P

The estimate for the phenotypic covariance function is given by

P̂ = P0 +

d∑
k=1

âkgk ⊗ gk. (5.6)

The candidate covariance function P0 is simply chosen before simulation. As it turns out

later, the choice of this candidate significantly influences the resulting estimates. {gk} is an

orthonormal sequence in H(P0) achieved by Gram-Schmidt orthonormalization of the sections

P0ti = P0(·, ti), i.e. every function gk has the form

gk =
∑
i

qkiP0ti , (5.7)

where qki are the coefficients of the orthonormalization (inner products). The estimator for the

coefficients ak follows from the Gaussian Dichotomy theorem and restricted maximum likelihood
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estimation,

âk =


1
n

n∑
i=1

(U
(i)
k )2 − 1 , if k ≤ d,

0 , otherwise

. (5.8)

Here, the {Uk} are a sequence of random variables in the Gaussian space HP0 , such that ΛP0Uk =

gk. The computation of Uk is straightforward. Since the Loève map ΛP0 is an isomorphism and

gk is constructed by Gram-Schmidt, Uk has the simple form

Uk = Λ−1
P0
gk = Λ−1

P0

∑
i

qkiP0ti =
∑
i

qkiΛ
−1
P0
P0ti =

∑
i

qkiz(ti). (5.9)

5.1.2. Estimating the Selection Differential s

To determine the estimates ĉk, observations for the selection differential s are needed, which is

in general not possible, except for individuals in artificially controlled breeding environments.

Fortunately, the fitness function W of a trait is well observable, and a function-valued version

of the Robertson-Price identity is given in Proposition 4.3, which enables the estimation of the

coefficients ck. Note that {z(t) : t ∈ T} has an expansion ([2] p.7) of the form

z(t) =
∑
k

Ukgk(t), (5.10)

where {Uk} and {gk} are specified as above. By the Robertson-Price identity and the linearity

of the covariance, it follows that

s(t) = Cov(z(t), w) =
∑
k

Cov(Uk, w)gk(t), (5.11)

and for a sample of size n the estimate of ck is

ĉk = Cov
∧

(Uk, w) =
1

n

n∑
i=1

(ŵi − w̄)(U
(i)
k − Ūk), (5.12)
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where

ŵi =
Wi

1
n

n∑
j=1

Wj

, (5.13)

and U
(i)
k is the ith realization of Uk.

5.1.3. Estimating the Selection Gradient β

As a result, estimates b̂k are computed according to equation (5.5) and thus the estimate for the

selection gradient is

β̂ =
d∑

k=1

b̂kγk. (5.14)

Recall that the functions γk satisfy P0γk = gk. In Sections 2.1 and 2.2 of [2] the explicit form

of those functions, depending on the method used to derive the gk, is given. Above, the gk were

constructed by Gram-Schmidt orthonormalization, see equation (5.7), that is

gk =
∑
i

qkiP0ti . (5.15)

By defining the γk by

γk =
∑
i

qkiδti , (5.16)

where δti is the Dirac-δ function, which has the property

P0δt = P0t, (5.17)

it follows that

P0γk = P0

∑
i

qkiδti =
∑
i

qkiP0δti =
∑
i

qkiP0ti = gk. (5.18)

5.1.4. Estimating the Pre-selection Mean z̄

The above estimators only hold if the Gaussian process {Z(t) : t ∈ T} under the true probability

measure P has mean zero. In general this is not the case, and new estimators for {ak}, and
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additionally for the mean function z̄ and covariance function P , have to be defined. An in-depth

derivation of those can be read in [1], Section 4.1.

Like Section 3.4 on sieve estimation, under the light of the Gaussian Dichotomy Theorem,

consider the collection P of probability measures on the measure space (Ω,A) such that

1. the process {Zt : t ∈ T} is a zero mean Gaussian process under every probability measure

P ∈P,

2. all probability measures P ∈P are equivalent,

3. the mean function z̄ belongs to the reproducing kernel Hilbert space for all P ∈P.

Recall the following notation. Let Pz̄ be the measure that endows {Z(t) : t ∈ T} with a Gaussian

distribution with mean z̄ (z̄ 6= 0) and covariance function P . Furthermore, the spaces `2 and `2c

are defined by

`2 = {a = {ak} :
∑
k

ak <∞} (5.19)

`2c = {a = {ak} :
∑
k

ak <∞, inf
k
ak > −1}. (5.20)

We wish to find a joint estimator (ˆ̄z, P̂ ) for the mean and covariance function of the function-

valued trait {z(t) : t ∈ T}. Using the Gaussian Dichotomy Theorem and Proposition 3.11,

the mean function z̄ can be written in the following way. Denote by EP the expected value

with respect to the distribution P. The same holds for any other operation. Recall, P is the

probability measure that endows {z(t) : t ∈ T} with a zero mean Gaussian distribution and

covariance function P (s, t).

z̄(t) = EPz̄ [Z(t)]
(1)
= EP[Y Z(t)]

(2)
= ΛP (Y )(t)

(3)
=
∑
k

θkΛP (Uk)(t)
(4)
=
∑
k

θk(1 + ak)gk, (5.21)

where (1) follows from the Gaussian Dichotomy Theorem, see equation (3.30), as both measures
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Pz̄ and P are elements of P and therefore equivalent, and furthermore {Z(t) : t ∈ T} is a zero

mean Gaussian process under P. Proposition 3.11 yields equality (2) and equality (3) is a result

of the expansion Y =
∑
k

θkUk for some θ = {θk} ∈ `2. The last part, equality (4), is derived

from ΛP (Uk) = (1 + ak)gk ([1], p. 33). Defining µk = θk(1 + ak) gives

z̄ =
∑
k

µkgk. (5.22)

Define the parameter space of P by

K =
{

(z̄,P) :z̄ =
∑
k

µkgk,µ ∈ `2, P = P0 +
∑
k

akgk ⊗ gk,a ∈ `2c ,

{gk} ⊂ H(P0) countable and orthonormal
}
. (5.23)

It is hard to find a sieve in this very large space, but by fixing a complete orthonormal system

{gk} it is possible to find a sieve in the subset

K′ =
{

(z̄,P) : z̄ =
∑
k

µkgk,µ ∈ `2, P = P0 +
∑
k

akgk ⊗ gk,a ∈ `2c
}

(5.24)

Consider the collection

Sd = {(µ,a) ∈ `2 × `2c : µk = ak = 0 for all k > d} (5.25)

which is a sieve of K′. By finding sieve estimators µ̂ and ã, one can compute the estimator

for (z̄, P̄ ). In [1] it is shown that under the probability measure Pz̄, which endows the process

{z(t) : t ∈ T} with a Gaussian(z̄, P ) distribution, {Uk} is a sequence of independent normally

distributed random variables in the associated Gaussian space. In particular, Uk ∼ N(µk, 1+ak).

The unbiased restricted maximum likelihood estimators µ̂ and ã are derived in [1], Lemma 4.1.1
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and Theorem 4.1.2, pp. 34-37:

µ̂k =


Ūk , if k ≤ d,

0 , otherwise

, and (5.26)

ãk =


1

n−1

n∑
i=1

(U
(i)
k − Ūk)

2 − 1 , if k ≤ d,

0 , otherwise

. (5.27)

Consequently, the joint estimator of (z̄, P ) is given by (ˆ̄z, P̂ ), where

ˆ̄z =

d∑
k=1

µ̂kgk, and (5.28)

P̂ = P0 +
d∑

k=1

ãkgk ⊗ gk. (5.29)

The estimation of the selection gradient is analogous to before. Calculate the sequence b̃ with

the same estimator ĉ, defined in equation (5.12), and the new estimator ã according to equation

(5.5), and hence

β̃ =
d∑

k=1

b̃kγk. (5.30)

5.1.5. Estimating the Next-generation Mean z̄′

The next-generation mean z̄′ is determined by the evolutionary response to selection s, specifi-

cally the selection gradient β. By the Breeder’s Equation for function-valued traits, an estimate

of the evolutionary response to selection can be computed as

∆̂z̄ = Gβ̂. (5.31)

34



www.manaraa.com

5.2. Dependent Case

The estimator for β is given in the previous section, and the computation of ∆̂z̄ becomes

straightforward. It holds

∆̂z̄ = Gβ̂ = G
d∑

k=1

b̃kγk =
d∑

k=1

b̃Gγk, (5.32)

where

Gγk = G
∑
i

qkiδti =
∑
i

qkiGti . (5.33)

For the additive-genetic covariance function G a candidate is chosen. In the estimations later,

the same candidate as for the phenotypic covariance is used.

Lastly, the estimator for the next-generation follows the definition of ∆z̄, i.e.

ˆ̄z′ = ˆ̄z + ∆̂z̄. (5.34)

5.2. Dependent Case

Contrary to the previous section, the observations of the function-valued trait {z(t) : t ∈ T}

are not independent anymore. It is assumed that the sample consists of independent families of

individuals. In each family, the individuals are related to each other in some form (full siblings,

half-siblings), determined the by the relationship matrix A = [Aij ]ij . The matrix entries Aij

specify the relationship between the organisms i and j of a sample. By [11], the covariance

between a family full-siblings is

Cov(full-sibling, full-sibling) = Cov(parent, offspring) =
1

2
G, (5.35)

where G is the additive-genetic covariance matrix. Analogously for half-siblings, it holds

Cov(half-sibling, half-sibling) =
1

4
G. (5.36)

To illustrate, what an actual relationship matrix looks like, consider the following example from

[15] p. 757:
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1 2 3

4 5

Organism 4 is the offspring of 1 and 2, and 5 is the offspring of 2 and 3. The relationship

matrix of this sample is given by

A =



1 0 0 1
2 0

0 1 0 1
2

1
2

0 0 1 0 1
2

1
2

1
2 0 1 1

4

0 1
2

1
2

1
4 1


. (5.37)

Let (Ω,A) be a measurable space and {z(t) : t ∈ T} a stochastic process on (Ω,A). Consider

a sample z(1)(t), . . . , z(n)(t) of the infinite-dimensional trait z(t). Define

z(t) = [z(1)(t), . . . , z(n)(t)]T ,

g(t) = [g(1)(t), . . . , g(n)(t)]T ,

e(t) = [e(1)(t), . . . , e(n)(t)]T , (5.38)

of which each z(i)(t) is decomposed into the sum

z(i)(t) = g(i)(t) + e(i)(t) for all i = 1, . . . , n, (5.39)

where g(i)(t) is the additive genetic process and e(i)(t) the environmental process of the ith
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organism. It holds that

Cov(g(s), g(t)) = AG(s, t) for all s, t ∈ T, (5.40)

where A is the relationship matrix of the sample and G(s, t) is the additive-genetic covari-

ance function. Since it is assumed that all organisms are raised independently under the same

conditions e(1)(t), . . . , e(n)(t) are independent, and it follows

Cov(e(s), e(t)) = InE(s, t) for all s, t ∈ T, (5.41)

where In is the identity matrix in Rn×n and E(s, t) is the environmental covariance function.

Note that, if all organisms have the same relation to each other, the relationship matrix A

has the form

A =



1 a · · · a

a 1
. . .

...

...
. . .

. . . a

a · · · a 1


= (1− a)In + aJn, (5.42)

where a is the relationship coefficient (a = 1
2 for full-siblings, a = 1

4 for half-siblings), and Jn is

the n× n matrix of 1’s. It follows that, equation (5.40) reduces to

Cov(g(s), g(t) = ((1− a)In + aJn)G(s, t) = InG(s, t) + (Jn − In)aG(s, t). (5.43)

Assuming, that there is no correlation between environmental and genetic factors, we conclude

that

Cov(z(s), z(t)) = Cov(g(s), g(t)) + Cov(e(s), e(t))

= InG(s, t) + (Jn − In)aG(s, t) + InE(s, t)

= In(G(s, t) + E(s, t)) + (Jn − In)aG(s, t). (5.44)
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From the independent case, it is known, that the phenotypic covariance function decomposes as

the sum P (s, t) = G(s, t)+E(s, t) and one can define the covariance function Ψ(s, t) := aG(s, t),

which leads to

Cov(z(s), z(t)) = InP (s, t) + (Jn − In)Ψ(s, t) = In(P (s, t)−Ψ(s, t)) + JnΨ(s, t). (5.45)

As the exact derivation of the estimates for the covariance function P and the selection gradient

β relies on a lot of technicalities, this thesis will skip the details at this point. The construction

of the estimates of interest can be found in [1], Chapter 5. In the following, only the rough ideas

that lead to the estimates will be outlined.

Define the matrix P (s, t) of covariance functions,

P (s, t) = Cov(z(s), z(t)) = In(P (s, t)−Ψ(s, t)) + JnΨ(s, t), (5.46)

where z(t) = [z(1)(t), . . . , z(n)(t)]T is a vector of function-valued traits of equally related organ-

isms. Under the measure P0 on the measure space
(
Ω,A = σ(zi(t), ∀i, t ∈ T )

)
, the stochastic

processes {z(t), t ∈ T} has mean zero and the covariance is given by

P0(s, t) = In(P0(s, t)−Ψ0(s, t)) + JnΨ0(s, t) (5.47)

One can diagonalize the matrix P (s, t) by

D(s, t) = V −1P (s, t)V , (5.48)

where the columns of V are orthonormal eigenfunctions of P (s, t), and the elements of the

diagonal matrix D are the eigenvalues

D11(s, t) = P (s, t) + (n− 1)Ψ(s, t), (5.49)

Djj(s, t) = P (s, t)−Ψ(s, t) for all j = 2, . . . , n. (5.50)
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Transform z(t) to

y(t) = V −1z(t). (5.51)

It is easy to show

Cov(y(s),y(t)) = D(s, t). (5.52)

Thus the covariance function for the process {y1(t), t ∈ T} is P + (n − 1)Ψ and the processes

{y1(t), t ∈ T}, i = 2, . . . , n, have the covariance function P −Ψ. This leads to the consideration

of two separate reproducing kernel Hilbert spaces, H(P0 + (n − 1)Ψ0) and H(P0 − Ψ0), which

are both subspaces of H(P0) ([1] Lemma 5.1.3). Using the Gaussian Dichotomy Theorem, it is

possible to expand P + (n− 1)Ψ and P −Ψ to

P + (n− 1)Ψ = P0 + (n− 1)Ψ0 +
∑
k

a+
k f

+
k ⊗ f

+
k , and (5.53)

P −Ψ = P0 −Ψ0 +
∑
k

a−k f
−
k ⊗ f

−
k , (5.54)

where {f+
k }, {f

−
k } are complete orthonormal systems inH(P0+(n−1)Ψ0) andH(P0−Ψ0), respec-

tively, and {a+
k }, {a

−
k } are sequences in `2c (square-summable and inf

k
ak > −1). By computing

estimates {â+
k }, {â

−
k }, the estimates P + (n− 1)Ψ
∧

and P −Ψ
∧

follow. The detailed estimates for

{a+
k }, {a

−
k } are explained in [1] Chapter 5.

Under the same conditions as before, that is, the sample consists of independent families

of equally related organisms, an estimator for the additive-genetic covariance matrix can be

constructed. Consider m ∈ N families with relationship coefficient a of sizes n1, . . . , nm, and

N =
m∑
j=1

nj . Then,

njΨ = P + (nj − 1)Ψ− (P −Ψ) for all j = 1, . . . , n. (5.55)
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Summing over all j = 1, . . . ,m leads to

m∑
j=1

njΨ =
m∑
j=1

(
P + (nj − 1)Ψ− (P −Ψ)

)
NΨ =

m∑
j=1

(
P + (nj − 1)Ψ

)
−m(P −Ψ)

Ψ =
1

N

m∑
j=1

(
P + (nj − 1)Ψ

)
− m

N
(P −Ψ). (5.56)

Using the estimators of P + (nj − 1)Ψ and P −Ψ, specified before, it follows that

Ψ̂ =
1

N

m∑
j=1

(P + (nj − 1)Ψ
∧

)− m

N
(P −Ψ
∧

), (5.57)

and hence by the definition of Ψ, i.e. Ψ = aG,

Ĝ =
Ψ̂

a
=

1

aN

m∑
j=1

(P + (nj − 1)Ψ
∧

)− m

aN
(P −Ψ
∧

). (5.58)

When trying to estimate the selection gradient β in the independent case, estimates of the

sequence {bk}, where bk = ck
ak+1 , are needed. For the dependent case, there is no estimator for

the coefficients {ck} since the distribution of the fitness function W is unknown. A workaround,

is to use the estimator of the independent case, see equations (5.12) and (5.13). The estimate

for β is then given in section 5.1.3. The estimation of the evolutionary response to selection

∆z̄ follows the Breeder’s equation for infinite-dimensional traits, see section 5.1.5 Lastly, to

estimate the mean function of a trait among the newborns of the offspring generation z̄′, an

estimate of the parent generation’s mean function z̄ is needed, which is not provided. Thus for

the estimation in this thesis the estimated mean function ˆ̄zind from the independent case is used,

and we get

ˆ̄z′ = ∆̂z̄ + ̂̄zind. (5.59)
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Data

In this section, the results from estimations using live data on Tribolium Castaneum larvae

growth curves are presented. With the theory and methods described in the previous chapters,

estimates for the mean function of the larvae before selection (parent generation) and of the their

offspring (offspring generation), as well as estimates for the covariance functions are computed.

The MATLAB code for the estimations is based on a MATLAB script by Tyler Baur [1] with a

few modifications, see Appendix A.

Data of the Tribolium larvae for generations 0,1,2,3, and 4 were provided by Carter and Irwin.

Before processing the data in MATLAB, it had to be cleaned using Microsoft Excel. Individuals

with incomplete data were removed, for example in case of missing information on the weight,

the sire, or dam of the individual. The biggest subset of individuals with measurements at the

same age was chosen. Due to sample size restrictions, it was decided to include observations

with slightly different ages at measurements, e.g. all observations of larvae where the first

measurement was conducted at age 1 and 2 (age in days) were included in the estimation

process and a weighted average was assigned as the new age at first measurement.

The estimations of the pre-selection mean, the evolutionary response to selection, and the

phenotypic covariance function were run using the Ornstein-Uhlenbeck covariance function and

the Wiener covariance function as candidate covariance functions P0. Furthermore, all weight

data on the larvae was log-transformed prior to estimation. Lastly, the observations are once

assumed to be independent, and once seen as a collection of independent families of full siblings.
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6. Estimates Based on Tribolium Castaneum Data

The difference in estimation of those two cases are described in Chapter 5. Note that using

the pre-selection mean and the evolutionary response to selection, the mean function among

newborns of the successive generation is computed according to equation (5.34). The selection

gradient is not explicitly estimated as it is contained in the computation of the evolutionary

response to selection. Furthermore, it is a functional, and illustrating it by itself is not possible.

One needs to apply it to some function which happens to be the case for the evolutionary

response to selection.

To compute estimates of the functions of interest, it is essential to find estimates for the

sequences of coefficients {ak}, {bk}, {ck}, and {µk}. The sequence {ak} belongs to the space

`2c , see equation 5.20, and {µk} is a sequence in `2 (equation (5.19)). Computing estimates is

straightforward using equation (5.5), which requires knowledge about the sequence {ck}. By the

Robertson-Price identity ck = Cov(Uk, w). To determine the fitness W of a trait z(t), assume

that W = ν(X) for some X ∈ HP , i.e. X has the form X =
∑
k

λiz(tk). Two useful forms of X

are

X = Z(t∗), (6.1)

for some specific t∗ ∈ T , or

X =

∫
T

Z(t)f(t)dµ(t), (6.2)

where f is a square-integrable function on T. In practice, we will compute X as the sum X =∑
k

Z(tk)f(tk), and use directional selection for the fitness, that is

W = exp(X). (6.3)

For more detail on other forms of fitness functions, see [10], Section 6.

The MATLAB script written for these tests gives more detail on the computation, and can

be found in Appendix B. Only a shortened version for Generation is given here to prevent

repetition and an unnecessary long thesis. Running the estimations and generating the plots

for all other generations is straightforward and follows the same commands as for Generation
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6. Estimates Based on Tribolium Castaneum Data

0. Due to different data for every generation, the ranges in the import commands need to

be adjusted to fit the Excel spreadsheet containing the data. Also, note that, due to the

fact that estimations were run for 5 generations, each with the Ornstein-Uhlenbeck covariance

function and Wiener covariance function as a candidate covariance, each run resulting in multiple

estimates, a considerable amount of plots was generated. To keep this thesis at a reasonable

length, only a small selection of the results are shown, mainly focusing on generations 0 and 1.
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Gen0: Data (Log−transformed)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3 Gen0: Data

Figure 6.1.: Generation 0 data, log-transformed on the right

Figure 6.1 illustrates the weight of 224 organisms in Generation 0, measured on 6 different

times in their larval period. The average larval period lasts about 15 to 17 days. Since dealing

with very small numbers (the weight of the beetle larvae lies in the region of a thousandth of

a gram) is difficult, a log-transformation makes sense to spread out the data to a wider range

of values. Note that these plots do not show functions. The given data only provides point

measurements, the lines are just connecting those points to illustrate growth.
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6.1. Ornstein-Uhlenbeck Covariance Function
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Figure 6.2.: Gen0: Mean function among organisms of the current generation ˆ̄z using Ornstein-
Uhlenbeck covariance function, based on log-transformed data on the left, re-
transformed on the right

6.1. Ornstein-Uhlenbeck Covariance Function

The first estimations based on generation 0 use an Ornstein-Uhlenbeck covariance function as

the candidate covariance function P0, i.e.

P0(s, t) = exp(−|s− t|) s, t ∈ T. (6.4)

Starting with the assumption that all organisms are independent, the red graph in Figure 6.2

shows the mean function among the larvae of generation 0. Left picture shows the estimated

mean function based on the log-transformed date, whereas the right refers to untransformed

data. The light gray areas, indicate the lines the growth data. Comparing the estimated mean

function of the offspring generation ˆ̄z′ with the data on generation 1, the same phenomenon is

seen (Figure 6.3). The estimated phenotypic covariance function P̂ for generation 0 is given in

Figure 6.4. The bumps, which were observable in the previous figures, appear again.

For the dependent case, there exists no estimate for the mean function of the current generation

z̄. In the test script the mean function of the independent case was used instead. The estimated
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6.1. Ornstein-Uhlenbeck Covariance Function
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Figure 6.3.: Gen0: Mean function among organisms of the offspring generation ˆ̄z′ using Ornstein-
Uhlenbeck covariance function, based on log-transformed data on the left, re-
transformed on the right

Figure 6.4.: Gen0: Ornstein-Uhlenbeck candidate covariance function P0 and the estimateed
phenotypic covariance function P̂
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6.2. Wiener Covariance Function

Figure 6.5.: Gen0: Ĝ and P̂ in the dependent case using Ornstein-Uhlenbeck covariance function

mean function among the newborns of the next generation z̄′ looks almost identical to the mean

of the independent case in Figure 6.3.

Figure 6.5 depicts the estimates for the additive-genetic covariance function G and the phe-

notypic covariance function P , respectively.

6.2. Wiener Covariance Function

Using the Wiener covariance function

P0(s, t) = min(s, t) (6.5)

different estimates are observed. Figure 6.6 shows ˆ̄z, the estimate for the pre-selection mean of

Generation 0, and Figure 6.7 gives the estimated next-generation mean ˆ̄z′ based on Generation 0.

Figure 6.8 compares the Wiener covariance function to the estimate of the phenotypic covariance

function and the same comparison is given in Figure 6.9 for the dependent case. As mentioned

before, there is no estimate for z̄ and the next-generation mean z̄′ is computed using the estimates

from the independent case. The generated plots show almost identical results for the dependent
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6.3. Comparison between Ornstein-Uhlenbeck and Wiener
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Figure 6.6.: Gen0: Mean function among organisms of the current generation ˆ̄z using Wiener
covariance function, based on log-transformed data on the left, re-transformed on
the right

case and are therefore not shown here.

6.3. Comparison between Ornstein-Uhlenbeck and Wiener

Clearly using the Ornstein-Uhlenbeck covariance function as stated before gives a bad estimate

for the pre-selection mean as well as for the next-generation mean. The observable local minima

are located at the points in time of the actual measurements, and represent the closest ˆ̄z gets to

the data, something one would expect. At least for the time points at which data is given the

estimate should be the most precise. But the mean weight for every time in-between is highly

overestimated. The same phenomenon is observable for the estimated covariance function. High

spikes are observable. In-between those spikes, the spatial minima are located at the time points

of the given data. It seems like the candidate covariance function can be adjusted for those time

points only. Missing data in-between those times results in the spikes.

Using the Wiener covariance function as the candidate, better estimates for the mean functions

are achieved. The mean functions fit the data. At t ≈ 13 a sharp bend is observable. A reason for

47



www.manaraa.com

6.3. Comparison between Ornstein-Uhlenbeck and Wiener
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Figure 6.7.: Gen0: Mean function among organisms of the offspring generation ˆ̄z′ using Wiener
covariance function, based on log-transformed data on the left, re-transformed on
the right

Figure 6.8.: Gen0: Wiener candidate covariance function P0 and the estimated phenotypic co-
variance function P̂
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6.3. Comparison between Ornstein-Uhlenbeck and Wiener

Figure 6.9.: Gen0: Ĝ and P̂ in the dependent case using Wiener covariance function

this can be the fact that some organisms get lighter towards the end of their larval period. Due

to the time adjustments made in the beginning to achieve a bigger sample size, the decrease

in weight for those organisms appears earlier in time. Using basis functions generated from

the Wiener covariance function might capture this and impact the estimated mean functions

more directly. One would expect the estimated covariance function to have a decent form, but

unfortunately P̂ shows spikes in the Wiener-case too.

Figures 6.10 and 6.11 show a comparison of the results for ˆ̄z and P̂ between the two candidate

covariance functions based on the date of Generation 0. The same comparison for all genera-

tions is depicted in figures 6.12 and 6.13. From the results of these first tests, it is clear that

the estimation is highly dependent of the choice of the candidate covariance function used. The

Ornstein-Uhlenbeck covariance functions gives bad results in general, whereas from the Wiener

covariance function acceptable estimates for the mean functions are achieved, but still the esti-

mated covariance seems not right. A question that arises immediately is how to choose the right

candidate covariance function.
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Figure 6.10.: Gen0: Comparison of estimated pre-selection mean ˆ̄z, Ornstein-Uhlenbeck and
Wiener

Figure 6.11.: Gen0: Comparison of estimated phenotypic covariance function P̂ , upper row
Ornstein-Uhlenbeck, lower row Wiener
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6.3. Comparison between Ornstein-Uhlenbeck and Wiener
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Figure 6.12.: All generations: ˆ̄z, upper row Ornstein-Uhlenbeck, lower row Wiener

Figure 6.13.: All generations: P̂ , upper row Ornstein-Uhlenbeck, lower row Wiener
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7. Alternative Candidate Covariance Function

The choice of a proper candidate covariance is crucial for the estimation of the mean functions

z̄, z̄′ and the phenotypic covariance function P . In the following, further choices are discussed.

7.1. Carter and Irwin

A natural choice for the candidate covariance function is the estimated additive-genetic covari-

ance function provided by Carter and Irwin. In their papers [5], [7], [6], the covariance function

G is estimated by fitting their covariance data of the Tribolium castaneum larvae to a random

multiple regression model of the form

G ∼ s+ t+ st (7.1)

with regression coefficients β0, β1, β2 and β3. In other words the additive covariance function is

of the form

G(s, t) = β0 + β1s+ β2t+ β3st. (7.2)

A more detailed view on the estimation of the coefficients can be read in Carter’s and Irwin’s

description [6]. Note that these βi have nothing to do with the selection gradient β, this thesis

is just following the notation of Carter and Irwin. Their resulting polynomial for G is

G(s, t) = 0.0449− 0.00297s− 0.00297t+ 0.000208st. (7.3)
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7.1. Carter and Irwin

Using this function in our estimation is problematic as matrices G = [G(ti, tj)]i,j=1,...,d are only

positive semi-definite, whereas positive definite matrices are needed. One has to investigate the

positive-definiteness of matrices generated by functions of the form (7.4).

Any covariance kernel has to fulfill the conditions of Definition 3.8, that is it has to be

symmetric and positive definite. It is easy to show, that symmetry holds if and only if β1 = β2,

thus by changing the notation of the βi, G has the form

G(s, t) = β0 + β1(s+ t) + β2st. (7.4)

The goal is to find conditions on β0, β1, and β2 such that a function of the form (7.4) is

positive definite and to check whether the candidate given by Carter and Irwin fulfills those

conditions or not. G is positive definite if and only if for all d ∈ N and time points t1, . . . , td the

matrix

G = [G(ti, tj)]i,j=1,...,d =


G(t1, t1) · · · G(t1, td)

...
. . .

...

G(td, t1) · · · G(td, td)

 (7.5)

is positive definite, i.e. for any vector x = [x1, . . . , xd]
T ∈ R

xTGx ≥ 0 (= 0⇔ x = 0). (7.6)

Using simply matrix algebra, the matrix G can be written as

G = [β0 + β1(ti + tj) + β2titj ]
n
i,j=1

= β0


1 · · · 1

...
. . .

...

1 · · · 1

+ β1



t1 · · · td
... · · ·

...

t1 · · · td

+


t1 · · · t1
... · · ·

...

td · · · td


+ β2


t1t1 · · · t1td

...
. . .

...

tdt1 · · · tdtd


= β01 1T + β1(1 tT + t 1T ) + β2t t

T (7.7)
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7.1. Carter and Irwin

where 1 = [1, . . . , 1]T ∈ Rd and t = [t1, . . . , td]
T . Following equation (7.7) it holds that

xT [G(ti, tj)]
d
i,j=1 x = β0x

T1 1Tx+ β1(xT1 tTx+ xT t 1Tx) + β2x
T t tTx. (7.8)

Let

xT1 = 1Tx =
d∑
i=1

xi = u ∈ R,

xT t = tTx =
d∑
i=1

tixi = v ∈ R. (7.9)

Then the condition for positivity can be stated as follows

xTGx = β0u
2 + 2β1uv + β3v

2

= u2

(
β0 + 2β1

v

u
+ β3

(v
u

)2
)
≥ 0 (7.10)

for all d ∈ N, time points t = [t1, . . . , td]
T , and x = [x1, . . . , xd]

T ∈ R. Examine the quadratic

polynomial P
(
v
u

)
in v

u ∈ R,

P
(v
u

)
= β0 + 2β1

v

u
+ β3

(v
u

)2
, (7.11)

and consider following cases:

(a) β2 = 0: P
(
v
u

)
reduces to a linear function in v

u ,

P
(v
u

)
= β0 + 2β1

v

u
, (7.12)

and can therefore not be greater than or equal to 0 for all v
u ∈ R.

(b) β2 < 0: P
(
v
u

)
is a concave quadratic function, i.e. its graph is a parabola with opening

facing downwards, and hence P
(
v
u

)
6≥ 0 for all v

u ∈ R.

(c) β2 > 0: P
(
v
u

)
is a convex quadratic polynomial in v

u ∈ R. It is greater than 0 for all v
u ∈ R
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7.1. Carter and Irwin

if and only if it has no roots, i.e. if its discriminant is less than 0.

v

The discriminant of P
(
v
u

)
is easily computed and has the form

DiscrP = (2β1)2 − 4β0β1 = 4(β2
1 − β0β2). (7.13)

This is less than 0 if and only if

β2
1 − β0β2 < 0. (7.14)

Going back to the additive genetic covariance function given by Carter and Irwin

G(s, t) = 0.0449− 0.00297s− 0.00297t+ 0.000208st, (7.15)

we have

β0 = 0.0449, β1 − 0.00297, β2 = 0.000208. (7.16)

This function fulfills the conditions specified since

β2
1 − β0β3 = −5.183× 10−7 ≤ 0. (7.17)
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7.1. Carter and Irwin

Unfortunately, this condition is not sufficient to guarantee that the generated matrices are

positive definite. With the help of the computer algebra software Maple, one can easily compute

the determinant of matrices G = [G(ti, tj)]i,j=1,...,d for general βi and time points t1, . . . , td.

Examining the matrices generated by d > 2 time points, their determinant is equal to 0 for

all betai, ti. Thus any matrix generated by more than two time points can only be positive

semidefinite. A more rigorous but easy proof, explaining the results from Maple, follows.

Consider the matrix-vector product of G with an arbitrary vector x ∈ Rd and set this equal

to 0,

Gx = β01 1Tx+ β1(1 tTx+ t 1Tx) + β2t t
Tx

=

(
β0

d∑
i=1

xi

)
1 +

(
β1

d∑
i=1

tixi

)
1 +

(
β1

d∑
i=1

xi

)
t+

(
β2

d∑
i=1

tixi

)
t = 0, (7.18)

where 0 is the vector of 0’s in Rd. This is a linear combination of the linearly independent

vectors 1 and t which is only equal to the zero-vector if and only if the respective coefficients

are all equal to 0. That is 
β0

d∑
i=1

xi + β1

d∑
i=1

tixi = 0

β1

d∑
i=1

xi + β2

d∑
i=1

tixi = 0

(7.19)

which is equivalent to β0 β1

β1 β2




d∑
i=1

xi

d∑
i=1

tixi

 =

0

0

 . (7.20)

This has a solution if the matrix consisting of the βi is regular, i.e. its determinant is non-zero and

the inverse matrix exists. The determinant of the matrix consisting of the βi is β2
1−β0β2. Initially

a condition for β0, β1, and β2 was found, see equation (7.14), which is exactly β2
1 − β0β2 < 0.
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7.2. Fitting Orthonormal Functions to the Data

Thus this matrix is invertible, and as a result,


d∑
i=1

xi

d∑
i=1

tixi

 =

0

0

 . (7.21)

This is a system of two equations an d ∈ N unknowns xi. For d > 2 there are infinitely many

non-trivial solutions x ∈ Rd such that xTGx = 0. Therefore the matrixG and its corresponding

function G are only positive semidefinite for d > 2 time points t1, . . . , td.

In general, data provides more than two points in time, and thus Carter and Irwin’s covariance

function cannot be used.. An alternative way to find a proper candidate covariance function

must be found.

7.2. Fitting Orthonormal Functions to the Data

Kirkpatrick, Lofsvold and Bulmer published a paper [14] described a method to estimate the

additive-genetic covariance function G.. This method involves fitting orthogonal functions to

the observed n× n sample covariance matrix Ĝ.

Remark 7.1.(Notation) In the following, G will denote the continuous covariance function

(not an integral operator as before), whereas boldface characters like Ĝ or t will be used for

matrices and column vectors, respectively. This notation is chosen as this is the notation of the

paper. Also, it is easier to distinguish Ĝ from Ĝ than Ĝ from Ĝ.

Consider a data set of observations of a infinite-dimensional trait z of n individuals and

measurements at d time points for each individual (in matrix form) [zij ]ij = [zi(tj)]ij , i =

1, . . . , n, j = 1, . . . , n. Denote the time points by t1, . . . , td.

The sample covariance matrix Ĝ is computed, where the i, j-th entry is the sample covariance
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7.2. Fitting Orthonormal Functions to the Data

of the trait at time ti and tj , i.e.

Ĝij =
1

n

n∑
k=1

(
zk(ti)− z̄(ti)

)(
zk(tj)− z̄(tj)

)
. (7.22)

This matrix gives direct estimates for the covariance function G at d2 points as Ĝij = Ĝ(ti, tj).

To get a full continuous estimate Ĝ, smooth curves are fitted to the data. The paper approaches

this using orthonormal polynomials, in particular normalized Legendre polynomials.

Definition 7.2.(Orthonormal functions) A pair of functions φi and φj is orthogonal and

normalized on an interval [a, b] if

b∫
a

φi(x)φj(x)dx = 0 and

b∫
a

φ2
i (x)dx = 1. (7.23)

Let (φi), i = 0, 1, 2, . . . , defined on the interval [a, b], be a complete orthonormal basis. Then,

for all s, t ∈ T , the additive-genetic covariance function G can be written as the linear combina-

tion of the orthonormal functions (φi)

G(s, t) =
∞∑
k=0

∞∑
l=0

cklφk(s
∗)φl(t

∗) (7.24)

where

t∗ = a+
b− a

tmax − tmin
(t− tmin), (7.25)

with tmin and tmax being the smallest and largest data time points, and the ckl are the coefficients

of the linear combination. To find an estimate Ĝ for the additive-genetic covariance function, it

is essential to estimate the coefficients ckl.

From equation (7.24), it is clear that, for the time points t0, . . . , tn given by the data it holds

G(ti, tj) =
∞∑
k=0

∞∑
l=0

cklφk(t
∗
i )φl(t

∗
j ) for all i, j = 0, . . . , d. (7.26)

As mentioned before, the entries Ĝij of the sample covariance matrix Ĝ are direct estimates of
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7.2. Fitting Orthonormal Functions to the Data

G(ti, tj), that means mathcalG(ti, tj) = Ĝij , and it follows that for the estimate Ĝ

Ĝij = Ĝ(ti, tj) =

d∑
k=0

d∑
l=0

ĉklφk(t
∗
i )φl(t

∗
j )

=

[
φ0(t∗i ), . . . , φd(t

∗
i )

]
ĉ00 · · · ĉ0d

...
...

ĉd0 · · · ĉdd


︸ ︷︷ ︸

Ĉ


φ0(t∗j )

...

φd(t
∗
j )

 (7.27)

for all i, j = 0, . . . , d. Thus the d× d sample covariance matrix Ĝ takes the form

Ĝ = ΦĈΦT (7.28)

where Φ is the matrix defined by Φij = φj(ti) for all i, j = 0, . . . , d, i.e.

Φ =


φ0(t∗0) · · · φd(t

∗
0)

...
...

φ0(t∗d) · · · φd(t
∗
d)

 . (7.29)

Kirkpatrick also calls Ĉ the coefficient matrix (in his paper this matrix is sub-scripted by Ĝ to

show its dependence on the sample covariance matrix). The previous implies that an estimator

for the coefficient matrix is then given by

Ĉ = Φ−1Ĝ[ΦT ]−1. (7.30)

Consequently, for any s, t ∈ T , an estimator for the additive-genetic covariance function obtained

Ĝ(s, t) =

d∑
k=0

d∑
l=0

ĉklφk(s
∗)φl(t

∗). (7.31)

In their paper, Kirkpatrick, Lofsvold and Bulmer use normalized Legendre polynomials as the

basis of orthonormal functions.

59



www.manaraa.com

7.2. Fitting Orthonormal Functions to the Data

Definition 7.3.(Normalized Legendre polynomials) The j-th normalized Legendre poly-

nomial φj is defined by

φj(x) =
1

2j

√
j +

1

2
·
bj/2c∑
m=0

(−1)m
(
j

m

)(
2j − 2m

j

)
xj−2m, j = 0, 1, . . . (7.32)

where b·c is the floor function, that rounds values down to the nearest integer. The normalized

Legendre polynomials are defined on the interval [−1, 1].

The choice of the family of orthonormal polynomials influences the interpolation of the co-

variance matrix Ĝ, except for the time points at which data was sampled (G(ti, tj) = Ĝij).

The differences in the interpolation by using different orthonormal polynomials is minimized by

the number of time points taken during the observation. It is also mentioned that the choice of

fitting orthonormal functions over other methods like for example splines is due to the analytical

benefits of the coefficients derived from using this method.

The method constructed above is named the full estimate of G by the authors of [14] as the

number of orthonormal functions fitted to the sample covariance matrix Ĝ is equal to the number

of time points given by the data. An approach to find a reduced estimate of G is specified as

well, where a smaller set of orthonormal functions φ0, . . . , φk, k < d, is fitted to Ĝ. The resulting

reduced estimate G̃ needs to be tested for goodness of fit. An approximate χ2 test statistic is

developed. This thesis will not go into detail here, a detailed explanation and examples can be

read in the previously mentioned paper [14].

There are possible drawbacks to the method. Pletcher and Geyer [17] state that fitting or-

thonormal polynomials to the scattered data, i.e. the sample covariances, does not automatically

conclude in a positive definite function. Furthermore, using polynomials of high degree results in

high fluctuations in the estimated covariance function, as those polynomials are very ”wiggly”.
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Figure 7.1.: Gen0: Sample covariances and estimated covariance function from fitting Legendre
polynomials

7.3. Estimates of the Additive-genetic Covariance Function Using

Legendre Polynomials

The data on Tribolium Castaneum larvae is used again to estimate the additive-genetic co-

variance function G, which is then used as a candidate covariance function to estimate the

pre-selection mean function, next-generation, and the phenotypic covariance function. Again,

for illustrative purposes, only results based on Generation 0 are presented. The MATLAB script

and the implementation of all additional functions are given in the Appendix C. The test script

only states the commands for the estimation based on Generation 0. Reproducing the estima-

tion based on all other estimations is straightforward, only the ranges of the import lines need

to be adjusted to the corresponding Excel file.

Figure 7.1 shows a scatterplot estimated covariances Ĝij = Cov(z(ti), z(tj))
∧

for the data at the

given time points t1, . . . , td. Next to that, the estimated covariance function from fitting normal-

ized Legendre polynomials is illustrated. As mentioned before, this estimate is not guaranteed

to be positive definite. For the estimation of the mean functions and phenotypic covariance

function, a candidate that generates a positive definite matrix, from the time points t1, . . . , td
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Figure 7.2.: Gen0: Estimated pre-selection mean ˆ̄z and next-generation mean ˆ̄z′ from fitting
Legendre polynomials

given by the data, is needed. The estimated covariance function from this method generates the

sample covariance matrix using the time points from the data, which is positive definite. Thus

the estimate can be used as a candidate covariance function. Note, that this does not mean that

the matrices generated by this estimate are in general positive definite. The graphs in Figure

7.2 are the results of the estimation of the pre-selection mean z̄ and the next-generation mean

z̄′. These estimates fit the data of Generation 0 and 1 very well. Also, the estimates achieved

by using polynomials as basis functions are smooth. There are no kinks observable.

The estimate for the phenotypic covariance function P in the independent case is almost

identical to the function shown in Figure 7.1, and therefore not explicitly shown anymore. For

the dependent case, P̂ is illustrated in Figure

The estimate z̄ for all generations is shown in Figure 7.4.

On another note, as mentioned before, using polynomials of high degree, which are very wiggly,

produces estimates with strong fluctuation. In Generation 4 more data time points are given

which means higher degree Legendre polynomials are used in the estimation. The resulting

estimate is depicted in Figure 7.5.
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Figure 7.3.: Gen0: Estimated phenotypic covariance function (Legendre, dependent)
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Figure 7.4.: Gen0 to Gen4 (left to right): Estimated pre-selection mean ˆ̄z and next-generation
mean ˆ̄z′ from fitting Legendre polynomials

63



www.manaraa.com

7.4. Adjusted Ornstein-Uhlenbeck and Wiener Covariance Function

0 5 10 15 20
0

5

10

15

20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gen4: Sample covariance

0 5 10 15 20
0

5

10

15

20

−5

0

5

10

15

20

25

30

Gen4: Ghat

Figure 7.5.: Gen4: Scattered sample covariances and estimated covariance function from fitting
Legendre polynomials

7.4. Adjusted Ornstein-Uhlenbeck and Wiener Covariance

Function

Due to the mentioned disadvantage from fitting orthonormal polynomials to the data, going back

to Ornstein-Uhlenbeck and Wiener candidate covariance functions is considered again. From

observing the data in the previous section, it became clear that the original candidate covariance

functions in Chapter 6 were badly chosen and did not fit the data, see Figure 7.6. Undoubtedly,

the values of the Ornstein-Uhlenbeck covariance function are to high on the diagonal. By

adjusting parameters, one can change the surface to better fit the data, i.e lower the center and

widen the body. Analogously, the original Wiener covariance used before produces values that

are too high compared to the data.

In a sense, the approach described fits a covariance function to the data. Obviously a pre-

liminary examination of the covariances between the data is needed. Note that the parameters

chosen in the following are only for illustration and by no means the perfect choice. Parameter
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Figure 7.6.: Gen0: Comparison between data (Legendre fitted) and Ornstein-Uhlenbeck covari-
ance function

estimation is a whole new question by itself. We use the following candidate covariance functions

POU1
0 (s, t) = exp(−0.25|s− t|) (7.33)

POU2
0 (s, t) = 0.25 exp(−0.1|s− t|) (7.34)

PW
0 (s, t) = 10−2 min(s, t), (7.35)

the first two being adjustments on the Ornstein-Uhlenbeck covariance function, whereas the

last is a downscaled Wiener covariance function. Examining the resulting estimated phenotypic

covariance function, there are noticable improvements observable, see Figure 7.7. The first

plot, shows a slight reduction in the height of the spikes, still the adjustments made seem to be

insufficient. This makes sense, as only the width of the original Ornstein-Uhlenbeck was changed.

The second adjustment additionally lowers the center, which results in a far better estimated

covariance function, ”better” in a sense that there are almost no spikes anymore. One can still

see small peaks in the estimate, hinting at a possibly insufficient adjustment. In the case of

the Wiener candidate covariance function the spikes previously witness completely disappear. It

seems like the adjustments made here cause a significant improvement. Looking at the estimates
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7.4. Adjusted Ornstein-Uhlenbeck and Wiener Covariance Function

Figure 7.7.: Gen0: Estimated phenotypic covariance function P̂
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Figure 7.8.: Gen0: Estimated pre-selection mean function ˆ̄z
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7.4. Adjusted Ornstein-Uhlenbeck and Wiener Covariance Function

for the pre-selection mean ˆ̄z, the benefits from fitting the covariance functions to the data are

even clearer. In the Figure 7.8 the ˆ̄z corresponding to the adjustments are shown. The first plot

shows the estimate using the first adjustment on the Ornstein-Uhlenbeck covariance function.

The fit to the growth data is better, the bumps are less striking but still noticeable. For the

second adjustment of the Ornstein-Uhlenbeck covariance function, ˆ̄z is almost a smooth curve.

Closely examining it, one can still see minor kinks at the time points of the given data. This

confirms the previous speculation that the fit achieved by the adjustments could be better. Yet,

as mentioned before, finding the best fit involves parameter estimation. Lastly, the resulting

estimated pre-selection mean using the downscaled Wiener covariance function is no different

from the one achieved before in chapter 6, as that was already a decent estimate. The kink

described before is still observable.

67



www.manaraa.com

8. Discussion

In evolutionary biology, infinite-dimensional (function-valued) traits are a much more complex

structure, making the estimation of quantities of interest difficult when using methods from

classical quantitative genetics which deals with finite-dimensional (vector-valued) traits only. In

presence of reproducing kernel Hilbert spaces and the assumption that infinite-dimensional traits

are Gaussian, the quantitative genetic model is extended. The Gaussian Dichotomy Theorem as

well as the Breeder’s Equation and Robertson-Price Identity for infinite-dimensional traits enable

the computation of the phenotypic covariance function P , pre-selection mean function z̄, and

next-generation mean function z̄′, in particular. Those estimates are proven to be asymptotically

unbiased and weakly consistent [1].

Using the sieve estimators of all the necessary quantities, the estimation of P, z̄, and z̄′ is

tested based on real-life data on Tribolium Castaneum larvae of five generations. Estimations

were run for all generations using the Ornstein-Uhlenbeck covariance function and the Wiener

covariance function as candidates P0. Easily one can see that the results of the estimations were

highly dependent of the choice of the candidate covariance function.

A method which fits orthonormal Legendre polynomials to the data was introduced. The

estimated covariance function is an interpolation of scattered sample covariance data points.

Using this smooth function as a candidate covariance function in the estimation of the phenotypic

covariance function and the mean functions, results in estimates that fit the data well. As stated

before, this method does not guarantee that the estimate is automatically positive definite.

Furthermore, using many data points which involves polynomials of higher degree, which are

very wiggly, results in an estimate covariance function with significant fluctuation.
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8. Discussion

To avoid this, fitting a known covariance function, such as the Ornstein-Uhlenbeck and Wiener

covariance used before, to the data can be considered. This requires a preliminary examination

of the sample covariances at the given time points of the data. Finding the right parameters to

adjust the Ornstein-Uhlenbeck and Wiener covariance function, involves parameter estimation.

This opens up a whole new world of possibilities. Still, guessing parameters such that the

covariance functions roughly fit the data, and using those as candidate covariance functions in

the estimations, prove to be a significant improvement.

Although it is possible to compare the estimates among each other, a judgment on whether

an estimate is the best is hard to pass, as there is no benchmark to measure the estimate with.

One can only compare the estimated functions to the underlying data.

When assuming that the data is clustered in independent families of equally-related organisms,

for example independent families of full-siblings, the absence of certain estimators, make it

difficult to give an analysis comparable to the extent of the independent case. Still the phenotypic

covariance function for different candidate covariance functions could be estimated, but again

the results are conditional on the choice of the candidate function, and a best estimate cannot

be determined.

Equally important, Principal Component Analysis is an alternative view on genetic covari-

ance functions. Covariance functions can be decomposed as the sum of eigenvalues λk and

eigenfunctions ϕk [20], i.e.

G(s, t) =
∑
k

λkϕk(s)ϕk(t), (8.1)

where the eigenfunction ϕk represents a direction of genetic variation and the eigenvalue λk

corresponds to the extent of variation of that direction. In practice, one only examines the

principal components that make up the most of variation, that is to say only the eigenvalues,

and their eigenfunctions that amount to e.g. 95% of the variation are considered. Principal

component analysis also opens up new possibilities for the estimation of covariance functions.
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Appendix

A. Estimation of the Selection Gradient

1 f unc t i on [ es t imates , zprime hat , zpr ime hat vec , P hat , varargout ] =
s e l e c t g r a d (Z ,W, d , n , t , r e l a t ed , covtype , vara rg in )

2 % Estimates the s e l e c t i o n grad i en t o f a sample o f organisms :
3 % The sample should e i t h e r c o n s i s t o f unre la t ed organisms , or

independent
4 % f a m i l i e s o f equa l ly−r e l a t e d organisms with the same r e l a t i o n s h i p
5 % f o r a l l f a m i l i e s
6 %
7 % Written by Tyler Baur , 2016 . Modif ied by Ly Viet Hoang , 2017 .
8 %
9 %%%%%%% Input %%%%%%

10 % n = vector o f fami ly s i z e s ( num fams x 1 or 1 x num fams i f
11 % r e l a t e d =’ r e l a t ed ’ or s c a l a r i f r e l a t e d =’ unre lated ’ )
12 % t = gr id o f time po in t s ( M x 1 or 1 x M)
13 % P0 = candidate covar iance func t i on ( anonymous func t i on )
14 % d = s i e v e parameter = o ( min (n) ) ( anonymous func t i on )
15 % Z = data ( matrix ∗∗∗∗( in rows ) ∗∗∗∗ or c e l l , each c e l l should

conta in a
16 % fami ly with i n d i v i d u a l s s to r ed in the rows o f a matrix
17 % r e l a t e d = ’ r e l a t ed ’ or ’ unre lated ’
18 % vararg in : i f r e l a t e d =’ unre lated ’ , vara rg in {1}=P0 , vararg in {2}=G
19 % i f r e l a t e d =’ r e l a t ed ’ , va rarg in {1}=G0, vararg in {2}=E0 ,
20 % vararg in {3}=num fams , and vararg in {4}= r e l n
21 % r e l n = r e l a t i o n s h i p c o e f f i c i e n t ( s c a l a r )
22 % num fams = number o f f a m i l i e s ( s c a l a r )
23 %
24 % Output
25 % est imate s = s t r u c t conta in ing e s t imate s o f a , b , c ( and mu i f
26 % r e l a t e d =’ unre lated ’ )
27 % zprime hat = est imated mean o f the t r a i t among newborns in the next
28 % genera t i on ( anonymous func t i on )
29 % zpr ime hat vec = zpr ime hat eva luated at t (M x 1)
30 % P hat = est imated phenotypic covar iance func t i on ( anonymous

func t i on )
31 % i f r e l a t e d =’ unre lated ’ , then
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32 % varargout {1} = zbar hat = est imated mean func t i on ( anonymous
33 % func t i on )
34 % varargout {2 ] = zbar hat vec = zbar hat eva luated at t (M x 1)
35 % i f r e l a t e d =’ r e l a t ed ’ , then
36 % varargout {1} = G hat = est imated g e n e t i c covar iance func t i on
37 % ( anonymous func t i on )
38 % Sample Commands
39 % I f r e l a t e d =’ unre lated ’
40 % [ est imates , zprime hat , zpr ime hat vec , P hat , zbar hat , zba r hat vec

] =
41 % s e l e c t g r a d (Z ,W, d , n , t , ’ unre lated ’ ,

P0 ,G)
42 % I f r e l a t e d =’ r e l a t ed ’
43 % [ est imates , zprime hat , zpr ime hat vec , P hat , G hat ] =
44 % s e l e c t g r a d (Z ,W, d , n , t , ’ r e l a t ed ’ , G0, E0 ,

num fams , r e l n )
45 %
46

47 %% Input check
48 i f ( s i z e ( t , 1 )>1 && s i z e ( t , 2 )>1)
49 e r r o r ( ’ t must be a vec to r ’ )
50 e l s e
51 i f s i z e ( t , 2 )>1
52 t=t ’ ;
53 end
54 end
55 i f ( s i z e (W, 1 )>1 && s i z e (W, 2 )>1)
56 e r r o r ( ’ W must be a vec to r ’ )
57 e l s e
58 i f s i z e (W, 2 )>1
59 W=W’ ;
60 end
61 end
62

63 %%%%% End Input check %%%%%
64

65 %% Cases : unre la t ed = independent , r e l a t e d =dependent
66 switch r e l a t e d
67 case ’ unre la t ed ’
68 P0=vararg in {1} ;
69 G=vararg in {2} ;
70 G t=c e l l ( l ength ( t ) , 1 ) ;
71 Z=Z ’ ;
72 f o r i =1: l ength ( t )
73 G t{ i}=@( s )G( t ( i ) , s ) ;
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74 end
75 [T, S]= meshgrid ( t , t ) ;
76

77 switch covtype
78 % Candidate covar iance func t i on i s a known cov fn ( e . g .

Wiener , Ornstein−Uhlenbeck , e t c . )
79 case ’ covfn ’
80 P0 matrix=P0(T, S) ;
81 % Candidate covar iance func t i on o f the form G( s , t )=b0+b1

∗( s+t )+b3∗ s ∗ t .
82 % Computational i s s u e s ( not pos . de f . ) . This i s j u s t a

workaround and not a good s o l u t i o n in a mathematical
s ense !

83 case ’ r e g r e s s i o n ’
84 P0 matrix=P0(T, S) ;
85 [V,D]= e i g ( P0 matrix ) ;
86 [ tmp,˜ ]= f i n d ( abs ( diag (D) )<10ˆ−15) ;
87 D new=D;
88 f o r i =1: l ength (tmp)
89 D new(tmp( i ) , tmp( i ) ) = 10ˆ−15;
90 end
91 P0 matrix=V∗D new∗ inv (V) ;
92 end
93 chol P0=cho l ( P0 matrix , ’ lower ’ ) ;
94 i nv cho l P0=chol P0 \ eye ( l ength ( t ) ) ;
95 g=ortho ( t , P0 , covtype ) ;
96

97 dn=f l o o r (d(n) ) ;
98 i f dn>=length ( t ) ;
99 dn=length ( t ) ;

100 end
101

102 [ a hat , b hat , c hat , a lpha hat ] = e s t imat e b ind ( Z ,W, chol P0
. . .

103 ,n , dn ) ;
104 [ P hat ]=compute P ( t , P0 , a hat , g ) ;
105 [ zbar hat , zba r hat vec ]= compute zbar ( alpha hat , g , t ) ;
106 e s t imate s=s t r u c t ( ’ a ’ , a hat , ’b ’ , b hat , ’ c ’ , c hat , ’ alpha ’ ,

a lpha hat ) ;
107 varargout{1}= zbar hat ;
108 varargout{2}= zbar hat vec ;
109 [ zprime hat , zpr ime hat vec ]= compute zprime ( G t , inv cho l P0 ,

b hat , t , zbar hat , ’ unre la t ed ’ ) ;
110

111 case ’ r e l a t e d ’

74



www.manaraa.com

Estimation of the Selection Gradient

112 e s t imate s=s t r u c t ( ’ a ’ , z e r o s ( l ength ( t ) , 1 ) , ’ b ’ , z e r o s ( l ength ( t )
, 1 ) , . . .

113 ’ c ’ , z e r o s ( l ength ( t ) , 1 ) , ’ a minus ’ , z e r o s ( l ength ( t ) , 1 ) ) ;
114 G0=vararg in {1} ;
115 E0=vararg in {2} ;
116 num fams=vararg in {3} ;
117 r e l n=vararg in {4} ;
118 Z c e l l=c e l l ( num fams , 1 ) ;
119 i f i smat r i x (Z)
120 s t a r t =1;
121 f o r i =1:num fams
122 tmp=sum(n ( 1 : i ) ) ;
123 Z c e l l { i}=Z( s t a r t : tmp , : ) ;
124 s t a r t=s t a r t+n( i ) ;
125 end
126 e l s e i f i s a (Z , c e l l )
127 Z c e l l=Z ;
128 end
129 P0=@( s , t ) G0( s , t )+E0( s , t ) ;
130 Psi0=@( s , t ) r e l n .∗G0( s , t ) ;
131 P0 minus=@( s , t ) (1− r e l n ) .∗G0( s , t )+E0( s , t ) ;
132 [T, S]= meshgrid ( t , t ) ;
133 P0 matrix=P0(T, S) ;
134 chol P0=cho l ( P0 matrix , ’ lower ’ ) ;
135 i nv cho l P0=chol P0 \ eye ( l ength ( t ) ) ;
136 g=ortho ( t , P0 , covtype ) ;
137 f minus=ortho ( t , P0 minus , covtype ) ;
138

139 P0 minus mat=P0 minus (T, S) ;
140 chol minus=cho l ( P0 minus mat , ’ lower ’ ) ;
141 f minus temp=ce l l 2mat ( c e l l f u n (@( x ) x ( t ) , f minus , . . .
142 ’ UniformOutput ’ , f a l s e ) ) ;
143 f minus mat=reshape ( f minus temp , l ength ( t ) , l ength ( t ) ) ;
144 % f u n c t i o n s are in columns
145

146 % round the inner product
147 Ndecimals = 12 ;
148 H = 10.ˆ Ndecimals ;
149 rkhs ip minus = round (H∗( chol P0 \ f minus mat ) ) /H;
150

151 sum P plus hat=@( s , t ) 0 ;
152 dn=f l o o r (d( min (n) ) ) ;
153 i f dn>=length ( t ) ;
154 dn=length ( t ) ;
155 end
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156 f o r i =1:num fams
157 n fam=n( i ) ;
158 P0 plus=@( s , t )P0( s , t )+(n fam−1) .∗ Psi0 ( s , t ) ;
159 f p l u s=ortho ( t , P0 plus , covtype ) ;
160 P0 plus mat=P0 plus (S ,T) ;
161 c h o l p l u s=cho l ( P0 plus mat , ’ lower ’ ) ;
162 f p lu s t emp=ce l l 2mat ( c e l l f u n (@( x ) x ( t ) , f p l u s , ’

UniformOutput ’ , f a l s e ) ) ;
163 f p lu s mat=reshape ( f p lus temp , l ength ( t ) , l ength ( t ) ) ;
164 %f u n c t i o n s are in columns
165

166 % round inner product
167 Ndecimals = 12 ;
168 H = 10.ˆ Ndecimals ;
169 r k h s i p p l u s = round (H∗( chol P0 \ f p lu s mat ) ) /H;
170 %inner product <fk , gl> i s the l , k entry
171

172 Transform=transform ( n fam ) ;
173 Y=Transform ’∗ Z c e l l { i } ;
174 Y1=Y( 1 , : ) ;
175 Yend=Y( 2 : end , : ) ;
176 a minus temp=es t imate a ( Yend ’ , chol minus , dn ) ;
177

178

179 aplus temp=es t imate a (Y1 ’ , cho l p lu s , dn )−[ ones (dn , 1 ) ; z e r o s
( l ength ( t )−dn , 1 ) ] ;

180 [ P p lus hat ]=compute P ( t , P0 plus , aplus temp , f p l u s ) ;
181 e s t imate s . a=es t imate s . a+( r k h s i p p l u s .ˆ2∗ aplus temp ) ;
182 P plus temp=P plus hat ;
183 sum P plus hat=@( s , t ) sum P plus hat ( s , t )+P plus temp ( s , t )

;
184 end
185 Z a l l mat=v e r t c a t ( Z c e l l { :} ) ;
186 num obs=s i z e (Z , 1 ) ;
187 e s t imate s . a minus=sum( a minus temp , 3 ) . / ( num obs−num fams )−[

ones (dn , 1 ) ; z e r o s ( l ength ( t )−dn , 1 ) ] ;
188

189 e s t imate s . a minus ( ( dn+1) : end )=ze ro s ( l ength ( t )−dn , 1 ) ;
190

191 [ P minus hat ]=compute P ( t , P0 minus , e s t imate s . a minus , f minus )
;

192

193 e s t imate s . a=es t imate s . a . / num obs+( rkhs ip minus . ˆ 2 ) ∗(
e s t imate s . a minus ) .∗ ( num obs−num fams ) . / ( num obs ) ;

194 e s t imate s . a ( ( dn+1) : end )=ze ro s ( l ength ( t )−dn , 1 ) ;
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195 e s t imate s . c=e s t i ma t e c ( Z al l mat ’ ,W, chol P0 , num obs , dn) ;
196 e s t imate s . b=es t imate b ( e s t imate s . a , e s t imate s . c ) ;
197

198 P hat=compute P ( t , P0 , e s t imate s . a , g ) ;
199

200 Ps i hat=@( s , t ) ( sum P plus hat ( s , t ) ) . / num obs−P minus hat ( s , t )
.∗ num fams . / num obs ;

201 G hat=@( s , t ) Ps i ha t ( s , t ) . / r e l n ;
202 G hat t=c e l l ( l ength ( t ) , 1 ) ;
203 f o r i =1: l ength ( t )
204 G hat t { i}=@( s ) G hat ( t ( i ) , s ) ;
205 end
206 % zero func t i on f o r zbar
207 z bar=@( s ) 0 ;
208 [ zprime hat , zpr ime hat vec ]= compute zprime ( G hat t ,

inv cho l P0 , e s t imate s . b , t , z bar , ’ r e l a t e d ’ ) ;
209 varargout{1}=G hat ;
210 end
211 end
212

213 f unc t i on g=ortho ( t , P0 , covtype )
214 % Orthonormalize the s e c t i o n s P 0t
215 P0 t=c e l l ( l ength ( t ) , 1 ) ;
216 g=c e l l ( l ength ( t ) , 1 ) ;
217 [T, S]= meshgrid ( t , t ) ;
218 switch covtype
219 case ’ covfn ’
220 P0 matrix=P0(T, S) ;
221 case ’ r e g r e s s i o n ’
222 P0 matrix=P0(T, S) ;
223 [V,D]= e i g ( P0 matrix ) ;
224 [ tmp,˜ ]= f i n d ( abs ( diag (D) )<10ˆ−15) ;
225 D new=D;
226 f o r i =1: l ength (tmp)
227 D new(tmp( i ) , tmp( i ) ) = 10ˆ−15;
228 end
229 P0 matrix=V∗D new∗ inv (V) ;
230 end
231 chol P0=cho l ( P0 matrix , ’ lower ’ ) ;
232 i nv cho l P0=chol P0 \ eye ( l ength ( t ) ) ;
233 %c r e a t e a c e l l array o f s e c t i o n s o f P0
234 f o r i =1: l ength ( t )
235 P0 t{ i}=@( s )P0( t ( i ) , s ) ;
236 end
237 %orthonormal i ze P0 to c a l c u l a t e g
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238 f o r j =1: l ength ( t )
239 g{ j}=compute lincomb ( P0 t , inv cho l P0 ( j , : ) ) ;
240 end
241 end
242

243 f unc t i on [P]=compute P ( t , P0 , a , g )
244 %Compute P=P0+sum ak gk∗gk
245 P=@( s , t ) 0 ;
246 f o r i =1: l ength ( t )
247 f=g{ i } ;
248 i f a ( i )==0
249 cont inue
250 e l s e
251 P=@( s , t )P( s , t )+a ( i ) .∗ f ( s ) .∗ f ( t ) ;
252 end
253 end
254 P=@( s , t )P0( s , t )+P( s , t ) ;
255 end
256

257 f unc t i on g=compute lincomb (X, v )
258 %computes l i n e a r combinat ions o f the form sum( v i ∗ X i )
259 %where X i s a c e l l array o f anonymous f u n c t i o n s
260 g=@( s ) 0 ;
261 f o r i =1: l ength ( v )
262 i f v ( i )==0
263 cont inue
264 e l s e
265 g=@( s ) ( g ( s )+v ( i ) .∗X{ i }( s ) ) ;
266 end
267 end
268 end
269

270 f unc t i on M=makeSymmetric (M, ˜ )
271 %remove rounding e r r o r from P matrix to make P matrix symmetric
272 issym=@( x ) a l l ( a l l ( x==x . ’ ) ) ;
273 i =20;
274 whi le ˜ issym (M)
275 Ndecimals = i ;
276 H = 10.ˆ Ndecimals ;
277 M = round (H∗M) /H;
278

279 % M=round (M, i ) ;
280 i=i −1;
281 end
282 end
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283

284 f unc t i on a hat=es t imate a (Z , chol P0 , dn)
285 %est imate s ahat+1
286 %Z i must be in columns
287 U=chol P0 \Z ; %U k i s in the kth row
288 U sq=sum(U. ˆ 2 , 2 ) ;
289 a hat =[( U sq ( 1 : dn ) ) ; z e r o s ( numel ( U sq )−dn , 1 ) ] ;
290 end
291

292 f unc t i on c hat=e s t im at e c (Z ,W, chol P0 , n , dn )
293 U=chol P0 \Z ; %U k i s in the kth row
294 U bar=mean(U, 2 ) ;
295 W U=U∗W. / n ;
296 w U=W U. / mean(W) ;
297 c hat=w U−U bar ;
298 c hat =[ c hat ( 1 : dn ) ; z e r o s ( numel ( U bar )−dn , 1 ) ] ;
299

300 end
301

302 f unc t i on [ b hat ] = es t imate b ( a hat , c hat )
303 b hat=c hat . / ( a hat +1) ;
304

305 end
306

307 f unc t i on T= transform (n)
308 T = g a l l e r y ( ’ orthog ’ ,n , 4 ) ’ ;
309 re turn ;
310 end
311

312

313 f unc t i on [ zbar , zbar vec ]= compute zbar ( alpha , g , t )
314 zbar=compute lincomb ( g , alpha ) ;
315 zbar vec=zbar ( t ) ;
316 end
317

318 f unc t i on [ a hat , b hat , c hat , a lpha hat ] = e s t imat e b ind ( Z ,W,
chol P0 , n , dn )

319 %Estimates the v e c t o r s a , b , c and alpha
320 % chol P0 ∗U=Z
321 U=chol P0 \Z ; %U k i s in the kth row
322 U bar=mean(U, 2 ) ;
323 U Ubar=ze ro s ( s i z e (U) ) ; %Uk−Ubar
324 f o r i =1:n
325 U Ubar ( : , i )=U( : , i )−U bar ;
326 end
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327 % U sq=sum( U Ubar . ˆ 2 , 2 ) . / n ;
328 U sq=sum( U Ubar . ˆ 2 , 2 ) . / ( n−1) ;
329 a hat =[( U sq ( 1 : dn )−1) ; z e r o s ( numel ( U sq )−dn , 1 ) ] ;
330 % −−−−
331 w hat=W. / mean(W) ;
332 c hat=U Ubar∗w hat . / n ;
333 % W U=U∗W. / n ;
334 % w U=W U. / mean(W) ;
335 % c hat=w U−U bar ;
336 c hat =[ c hat ( 1 : dn ) ; z e r o s ( numel ( U sq )−dn , 1 ) ] ;
337 b hat =[ c hat ( 1 : dn ) . / U sq ( 1 : dn ) ; z e r o s ( numel ( U sq )−dn , 1 ) ] ;
338 a lpha hat =[U bar ( 1 : dn ) ; z e r o s ( numel ( U sq )−dn , 1 ) ] ;
339 end
340

341 %%
342 f unc t i on [ zprime , zpr ime vec ]= compute zprime ( G t , inv cho l P0 , b , t , zbar ,

r e l a t e d )
343 %compute/ es t imate zprime
344 %G t = c e l l array o f symbol ic f u n c t i o n s o f s e c t i o n s o f the g e n e t i c

covar iance func t i on
345 %b = c o e f f i c i e n t s o f s e l e c t i o n grad i en t
346 %zbar = mean proce s s zbar ( t ) − symbol ic func t i on
347 n t=s i z e ( G t , 1 ) ;
348 gamma G=c e l l ( n t , 1 ) ;
349 gamma G vec=ze ro s ( n t , l ength ( t ) ) ;
350 i f s i z e ( t , 1 )>1
351 t=t ’ ;
352 end
353 f o r j =1: n t
354 gamma G{ j}=compute lincomb ( G t , inv cho l P0 ( j , : ) ) ;
355 gamma G vec ( j , : )=G t{ j }( t ) ;
356 end
357 switch r e l a t e d
358 case ’ unre la ted ’
359 zprime=compute lincomb (gamma G, b) ;
360 zprime=@( s ) zprime ( s )+zbar ( s ) ;
361 zpr ime vec=zprime ( t ) ’ ;
362 case ’ r e l a t e d ’
363 zprime=compute lincomb (gamma G, b) ;
364 zpr ime vec=b ’∗ i nv cho l P0 ∗gamma G vec ;
365 end
366 end

B. Orstein-Uhlenbeck and Wiener
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1 c l e a r v a r i a b l e s
2 c l o s e a l l
3 c l c
4

5 %% Desc r ip t i on : Est imation o f the s e l e c t i o n grad i en t
6

7 % The MATLAB code f o r the e s t imat i on s i s based on the MATLAB s c r i p t ’
s e l e c t g r a d .m’ by Tyler Baur ’ s , PhD at the Un ive r s i ty o f Wisconsin
− Milwaukee , with m o d i f i c a t i o n s and improvements by me ( documented

in ’ s e l e c t g r a d .m’ )
8

9 % The goa l o f t h i s t e s t i s to use the theory and methods de s c r ibed to
compute e s t imate s ( f u n c t i o n s ) f o r the pre−s e l e c t i o n mean , the

mean o f the t r a i t among newborns o f the next gene ra t i on and the
covar iance func t i on . (The es t imate f o r the s e l e c t i o n grad i en t
i t s e l f i s not g iven as i t i s not a p r a c t i c a l r e s u l t by i t s own . )
During the proce s s the obs e rva t i on s are assumed to be

10 % 1 independent
11 % 2 dependent
12

13 % Data o f Tribol ium la rvea f o r g ene ra t i on s 0 ,1 ,2 ,3 , 4 ( and 4 . 2 ) g iven
by Carter and Irwin . Data has been c leaned us ing Mic roso f t Excel
b e f o r e import in to MATLAB. I n d i v i d u a l s with incomplete data were
removed . The b i g g e s t subset o f i n d i v i d u a l s with measurements (DSH1
, DSH2 , . . . ) at the same age was chosen . Due to sample s i z e
r e s t r i c t i o n s , i t was dec ided to inc lude obs e rva t i on s with s l i g h t l y

d i f f e r e n t ages at measurements , e . g . a l l ob s e rva t i on s o f l a rvea
where the f i r s t measurement (DSH1) was conducted at age 1 and 2 (
age in days ) were inc luded and a weighted average was as s i gned as
the new age at f i r s t measurement (DSH1 new) .

14

15 % For more d e t a i l e d in fo rmat ion on the data set , s e e the inc luded .
r t f document ’ t r i b d a t a s e t d e s c r i p t i o n . r t f ’ .

16

17 % Note : Al l denotat ions ”GenX” , X=0 ,1 ,2 ,3 r e f e r to the gene ra t i on
used f o r e s t imat i on and NOT n e c e s s a r l y to the gene ra t i on the
func t i on d e s c r i b e s . E . g . zpr ime hat gen1 i s the es t imate o f the
mean among newborns o f the o f f s p r i n g gene ra t i on ( gene ra t i on 2)
us ing gene ra t i on 1 as under ly ing data f o r the e s t imat ion .

18

19 %% Candidates f o r covar iance f u n c t i o n s
20 % Use Ornstein−Uhlenbeck and Wiener covar iance func t i on as candidate

f o r the covar iance func t i on P and the a d d i t i v e g e n e t i c covar iance
func t i on G.

21
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22 G cand=c e l l ( 3 , 1 ) ;
23 cov name=c e l l ( 3 , 1 ) ;
24

25 % Ornstein−Uhlenbeck covar iance
26 G cand{1} = @( s , t ) exp(−abs ( s−t ) ) ;
27 cov name{1} = ’O−U ’ ;
28

29 % Wiener covar iance
30 G cand{2} = @( s , t ) min ( s , t ) ;
31 cov name{2} = ’ Wiener ’ ;
32

33 % Wiener covar iance 2
34 G cand{3} = @( s , t ) 10ˆ−2∗min ( s , t ) ;
35 cov name{3} = ’ Wiener 2 ’ ;
36

37 %% Estimation us ing Genereat ion 0
38 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 %% Import Data ( Parent gene ra t i on )
40 %
41 % Z : N−by−T matrix conta in ing the weight o f the Tribol ium larvae ,

where N i s the number o f ob s e rva t i on s and T the number o f
measurements

42 % DSH: N−by−M matrix conta in ing the r e s p e c t i v e days o f measurements .
The k−th column conta in s the day o f each organism ’ s k−th
measurement .

43 % n : vec to r o f fami ly s i z e s , s t i l l c onta in s 0 s that need to be
removed .

44

45 [ ˜ , ˜ , raw ] = x l s r e ad ( ’ Se l Gen0Data dryad cleaned . x l s ’ , ’ e s t imat i on ’ ) ;
46 n = ce l l 2mat ( raw ( 2 : end , 9 ) ) ;
47 n=n(n˜=0) ;
48 DSH=ce l l 2mat ( raw ( 2 : end , 1 0 : 1 5 ) ) ;
49 Z=ce l l 2mat ( raw ( 2 : end , 1 6 : 2 1 ) ) ;
50

51 % Log−trans form data
52 Z log=log (Z) ;
53

54 % Create vec to r weighted average o f ages at which the f i r s t , second
, . . . measurements were taken

55 t=mean(DSH, 1 ) ;
56

57 Z tmp0=Z ;
58 t tmp0=t ;
59

60 d=@(n) min (n) ; % s i e v e
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61 n obs=s i z e (Z , 1 ) ;
62

63 % Plot data
64 f i g u r e
65 subplot ( 1 , 2 , 1 )
66 p lo t ( t , Z log )
67 % a x i s ( [ t (1 ) t ( end ) 0 4∗10ˆ−3])
68 t i t l e ( ’Gen0 : Data ( Log−transformed ) ’ )
69 subplot ( 1 , 2 , 2 )
70 p lo t ( t , Z)
71 % a x i s ( [ t (1 ) t ( end ) −11 −5])
72 t i t l e ( ’Gen0 : Data ’ )
73

74 %% Import Data ( Of f sp r ing gene ra t i on )
75 [ ˜ , ˜ , raw2 ] = x l s r e ad ( ’ Se l Gen1Data dryad cleaned . x l sx ’ , ’ e s t imat i on ’

) ;
76 DSH=ce l l 2mat ( raw2 ( 2 : end , 1 1 : 1 6 ) ) ;
77 t nextgen=mean(DSH, 1 ) ;
78 Z nextgen=ce l l 2mat ( raw2 ( 2 : end , 1 7 : 2 2 ) ) ;
79 Z nextgen log=log ( Z nextgen ) ;
80 Z nextgen log mean=mean( Z nextgen log , 1 ) ;
81

82 %% Clear temporary v a r i a b l e s
83 c l e a r v a r s raw raw2 ;
84

85 %% Check import data Z and vec to r o f fami ly s i z e s n be f o r e e s t imat i on
86 i f ( s i z e (Z , 1 )˜=sum(n) )
87 e r r o r ( [ ’ Error in data Z or vec to r n . Number o f ob s e rva t i on s does

not match vec to r o f fami ly s i z e s ’ ] )
88 end
89

90 %% Compute f i t n e s s func t i on : D i r e c t i o n a l s e l e c t i o n , W=exp (X)
91

92 % Choices o f f
93 % f ( t ) = 1
94 f=ones (1 , l ength ( t ) ) ;
95

96 % f ( t ) = t
97 % f=t ;
98

99 % Method : I n t e g r a l
100 % f o r i =1: n obs
101 % X( i )=trapz ( t , Z( i , : ) .∗ f ) ;
102 % end
103
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104 % Method : Sum
105 X=Z∗ f ’ ;
106 W=exp (X) ;
107

108 % f o r i =1:2
109 %% Independent Case
110 % Assumption : Sample o f unre la t ed organisms . Family s i z e s are

i r r e l e v a n t , only the number o f ob s e rva t i on s i s needed .
111

112 [ e s t imates gen0 ou , zpr ime hat gen0 ou , zpr ime hat vec gen0 ou ,
P hat gen0 ou , zbar hat gen0 ou , zbar hat vec gen0 ou ]= s e l e c t g r a d (
Z log ,W, d , n obs , t , ’ unre la t ed ’ , ’ covfn ’ , G cand {1} , G cand {1})

113 [ e s t imates gen0 wi , zpr ime hat gen0 wi , zpr ime hat vec gen0 wi ,
P hat gen0 wi , zbar hat gen0 wi , zba r hat vec gen0 w i ]= s e l e c t g r a d (
Z log ,W, d , n obs , t , ’ unre la t ed ’ , ’ covfn ’ , G cand {2} , G cand {2})

114 % [ es t imates gen0 wi2 , zpr ime hat gen0 wi2 , zpr ime hat vec gen0 wi2 ,
P hat gen0 wi2 , zbar hat gen0 wi2 , zbar hat vec gen0 wi2 ]= s e l e c t g r a d
( Z log ,W, d , n obs , t , ’ unre lated ’ , ’ covfn ’ , G cand {3} , G cand {3})

115

116 %% Dependent Case
117 % Observat ions are s t ruc tu r ed in independent f a m i l i e s o f organisms

with the same r e l a t i o n . Observat ions are f u l l s i b l i n g s g i v i ng the
the r e l a t i o n s h i p c o e f f i c i e n t 0 . 5 . The Wiener covar iance i s used
as a candidate f o r the environmental covar iance func t i on .

118

119 E0 = @( s , t ) 10ˆ−3∗min ( s , t ) ;
120 num fams=length (n) ;
121 r e l n =0.5 ;
122

123 [ e s t imates2 gen0 ou , zpr ime hat2 gen0 ou , zpr ime hat vec 2 gen0 ou ,
P hat2 gen0 ou , G hat2 gen0 ou ]= s e l e c t g r a d ( Z log ,W, d , n , t , ’ r e l a t e d ’ ,
’ covfn ’ , G cand {1} ,E0 , num fams , r e l n )

124 [ e s t imates2 gen0 wi , zpr ime hat2 gen0 wi , zpr ime hat vec 2 gen0 wi ,
P hat2 gen0 wi , G hat2 gen0 wi ]= s e l e c t g r a d ( Z log ,W, d , n , t , ’ r e l a t e d ’ ,
’ covfn ’ , G cand {2} ,E0 , num fams , r e l n )

125 % [ est imates2 gen0 wi2 , zpr ime hat2 gen0 wi2 , zpr ime hat vec 2 gen0 wi2
, P hat2 gen0 wi2 , G hat2 gen0 wi2 ]= s e l e c t g r a d ( Z log ,W, d , n , t , ’
r e l a t ed ’ , ’ covfn ’ , G cand {3} ,E0 , num fams , r e l n )

126

127 %% Plots
128 gray = 1/255∗ [ 2 00 , 200 , 200 ] ;
129 t g r i d=l i n s p a c e ( t (1 ) , t ( end ) ,1000) ;
130 [ S ,T]= meshgrid ( t g r i d , t g r i d ) ;
131 lw =1.1 ;
132
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133 % Plots f o r Ornstein−Uhlenbeck
134 f i g u r e
135 subplot ( 1 , 2 , 1 )
136 p lo t ( t , Z log , ’ Color ’ , gray )
137 hold on
138 p lo t ( t g r i d , zbar hat gen0 ou ( t g r i d ) , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , lw )
139 t i t l e ( [ ’Gen0 : zbarhat ( independent , log−t r a n s f ) , ’ , cov name {1} ] )
140 % % a x i s ( [ t (1 ) t ( end ) −11 −2])
141 subplot ( 1 , 2 , 2 )
142 p lo t ( t , Z , ’ Color ’ , gray )
143 hold on
144 p lo t ( t g r i d , exp ( zbar hat gen0 ou ( t g r i d ) ) , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , lw )
145 t i t l e ( [ ’Gen0 : zbarhat ( independent ) , ’ , cov name {1} ] )
146 % a x i s ( [ t (1 ) t ( end ) 0 80∗10ˆ−3])
147

148 f i g u r e
149 subplot ( 1 , 2 , 1 )
150 p lo t ( t nextgen , Z nextgen log , ’ Color ’ , gray )
151 hold on
152 p lo t ( t g r i d , zpr ime hat gen0 ou ( t g r i d ) , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , lw )
153 t i t l e ( [ ’Gen0 : zprimehat ( independent , log−t r a n s f ) , ’ , cov name {1} ] )
154 % a x i s ( [ t (1 ) t ( end ) −11 −2])
155 subplot ( 1 , 2 , 2 )
156 p lo t ( t nextgen , Z nextgen , ’ Color ’ , gray )
157 hold on
158 p lo t ( t g r i d , exp ( zpr ime hat gen0 ou ( t g r i d ) ) , ’ Color ’ , ’ r ’ , ’ LineWidth ’ ,

lw )
159 t i t l e ( [ ’Gen0 : zprimehat ( independent ) , ’ , cov name {1} ] )
160 % a x i s ( [ t (1 ) t ( end ) 0 80∗10ˆ−3])
161

162 f i g u r e
163 subplot ( 1 , 2 , 1 )
164 s u r f (S ,T, G cand {1}(S ,T) , ’ L ineSty l e ’ , ’ none ’ )
165 view (−15 ,15)
166 t i t l e ( [ ’Gen0 : P0 ( independent ) , ’ , cov name {1} ] )
167 subplot ( 1 , 2 , 2 )
168 s u r f (S ,T, P hat gen0 ou (S ,T) , ’ L ineSty l e ’ , ’ none ’ )
169 view (−15 ,15)
170 t i t l e ( [ ’Gen0 : Phat ( independent ) , ’ , cov name {1} ] )
171

172 t g r i d 2=l i n s p a c e (0 , t ( end ) ,1000) ;
173 [ S2 , T2]= meshgrid ( t g r i d2 , t g r i d 2 ) ;
174 f i g u r e
175 subplot ( 1 , 2 , 1 )
176 s u r f ( S2 , T2 , G hat2 gen0 ou ( S2 , T2) , ’ L ineSty l e ’ , ’ none ’ )
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177 view (30 ,15)
178 t i t l e ( [ ’Gen0 : Ghat ( dependent ) , ’ , cov name {1} ] )
179 subplot ( 1 , 2 , 2 )
180 s u r f ( S2 , T2 , P hat2 gen0 ou (S ,T) , ’ L ineSty l e ’ , ’ none ’ )
181 view (30 ,15)
182 t i t l e ( [ ’Gen0 : Phat ( dependent ) , ’ , cov name {1} ] )
183

184 % Plots f o r Wiener
185 f i g u r e
186 subplot ( 1 , 2 , 1 )
187 p lo t ( t , Z log , ’ Color ’ , gray )
188 hold on
189 p lo t ( t g r i d , zbar hat gen0 wi ( t g r i d ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , lw )
190 t i t l e ( [ ’Gen0 : zbarhat ( independent , log−t r a n s f ) , ’ , cov name {2} ] )
191 % a x i s ( [ t (1 ) t ( end ) −11 −5])
192 subplot ( 1 , 2 , 2 )
193 p lo t ( t , Z , ’ Color ’ , gray )
194 hold on
195 p lo t ( t g r i d , exp ( zbar hat gen0 wi ( t g r i d ) ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , lw )
196 t i t l e ( [ ’Gen0 : zbarhat ( independent ) , ’ , cov name {2} ] )
197 % a x i s ( [ t (1 ) t ( end ) 0 4∗10ˆ−3])
198

199 f i g u r e
200 subplot ( 1 , 2 , 1 )
201 p lo t ( t nextgen , Z nextgen log , ’ Color ’ , gray )
202 hold on
203 p lo t ( t g r i d , zpr ime hat gen0 wi ( t g r i d ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , lw )
204 t i t l e ( [ ’Gen0 : zprimehat ( independent , log−t r a n s f ) , ’ , cov name {2} ] )
205 % a x i s ( [ t (1 ) t ( end ) −11 −5])
206 subplot ( 1 , 2 , 2 )
207 p lo t ( t nextgen , Z nextgen , ’ Color ’ , gray )
208 hold on
209 p lo t ( t g r i d , exp ( zpr ime hat gen0 wi ( t g r i d ) ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ ,

lw )
210 t i t l e ( [ ’Gen0 : zprimehat ( independent ) , ’ , cov name {2} ] )
211 % a x i s ( [ t (1 ) t ( end ) 0 4∗10ˆ−3])
212

213 f i g u r e
214 subplot ( 1 , 2 , 1 )
215 s u r f (S ,T, G cand {2}(S ,T) , ’ L ineSty l e ’ , ’ none ’ )
216 view (−15 ,15)
217 t i t l e ( [ ’Gen0 : P0 ( independent ) , ’ , cov name {2} ] )
218 subplot ( 1 , 2 , 2 )
219 s u r f (S ,T, P hat gen0 wi (S ,T) , ’ L ineSty l e ’ , ’ none ’ )
220 view (−15 ,15)
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221 t i t l e ( [ ’Gen0 : Phat ( independent ) , ’ , cov name {2} ] )
222

223 t g r i d 2=l i n s p a c e ( t (1 ) +0.3 , t ( end ) ,1000) ;
224 [ S2 , T2]= meshgrid ( t g r i d2 , t g r i d 2 ) ;
225 f i g u r e
226 subplot ( 1 , 2 , 1 )
227 s u r f ( S2 , T2 , G hat2 gen0 wi ( S2 , T2) , ’ L ineSty l e ’ , ’ none ’ )
228 view (30 ,15)
229 t i t l e ( [ ’Gen0 : Ghat ( dependent ) , ’ , cov name {2} ] )
230 subplot ( 1 , 2 , 2 )
231 s u r f ( S2 , T2 , P hat2 gen0 wi ( S2 , T2) , ’ L ineSty l e ’ , ’ none ’ )
232 view (30 ,15)
233 t i t l e ( [ ’Gen0 : Phat ( dependent ) , ’ , cov name {2} ] )
234

235 % % Plots f o r Wiener 2
236 % f i g u r e
237 % subplot ( 1 , 2 , 1 )
238 % plo t ( t , Z log , ’ Color ’ , gray )
239 % hold on
240 % plo t ( t g r i d , zbar hat gen0 wi2 ( t g r i d ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , lw )
241 % t i t l e ( [ ’ Gen0 : zbarhat ( independent , log−t r a n s f ) , ’ , cov name {3} ] )
242 % % a x i s ( [ t (1 ) t ( end ) −11 −5])
243 % subplot ( 1 , 2 , 2 )
244 % plo t ( t , Z , ’ Color ’ , gray )
245 % hold on
246 % plo t ( t g r i d , exp ( zbar hat gen0 wi2 ( t g r i d ) ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ ,

lw )
247 % t i t l e ( [ ’ Gen0 : zbarhat ( independent ) , ’ , cov name {3} ] )
248 % % a x i s ( [ t (1 ) t ( end ) 0 4∗10ˆ−3])
249 %
250 % f i g u r e
251 % subplot ( 1 , 2 , 1 )
252 % plo t ( t nextgen , Z nextgen log , ’ Color ’ , gray )
253 % hold on
254 % plo t ( t g r i d , zpr ime hat gen0 wi2 ( t g r i d ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , lw )
255 % t i t l e ( [ ’ Gen0 : zprimehat ( independent , log−t r a n s f ) , ’ , cov name {3} ] )
256 % % a x i s ( [ t (1 ) t ( end ) −11 −5])
257 % subplot ( 1 , 2 , 2 )
258 % plo t ( t nextgen , Z nextgen , ’ Color ’ , gray )
259 % hold on
260 % plo t ( t g r i d , exp ( zpr ime hat gen0 wi2 ( t g r i d ) ) , ’ Color ’ , ’ b ’ , ’ LineWidth

’ , lw )
261 % t i t l e ( [ ’ Gen0 : zprimehat ( independent ) , ’ , cov name {3} ] )
262 % % a x i s ( [ t (1 ) t ( end ) 0 4∗10ˆ−3])
263 %
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264 % f i g u r e
265 % subplot ( 1 , 2 , 1 )
266 % s u r f (S ,T, G cand {3}(S ,T) , ’ L ineSty le ’ , ’ none ’ )
267 % view (−15 ,15)
268 % t i t l e ( [ ’ Gen0 : P0 ( independent ) , ’ , cov name {3} ] )
269 % subplot ( 1 , 2 , 2 )
270 % s u r f (S ,T, P hat gen0 wi2 (S ,T) , ’ L ineSty le ’ , ’ none ’ )
271 % view (−15 ,15)
272 % t i t l e ( [ ’ Gen0 : Phat ( independent ) , ’ , cov name {3} ] )
273 %
274 % t g r i d 2=l i n s p a c e ( t (1 ) +0.3 , t ( end ) ,1000) ;
275 % [ S2 , T2]= meshgrid ( t g r i d2 , t g r i d 2 ) ;
276 % f i g u r e
277 % subplot ( 1 , 2 , 1 )
278 % s u r f ( S2 , T2 , G hat2 gen0 wi2 ( S2 , T2) , ’ L ineSty le ’ , ’ none ’ )
279 % view (30 ,15)
280 % t i t l e ( [ ’ Gen0 : Ghat ( dependent ) , ’ , cov name {3} ] )
281 % subplot ( 1 , 2 , 2 )
282 % s u r f ( S2 , T2 , P hat2 gen0 wi2 ( S2 , T2) , ’ L ineSty le ’ , ’ none ’ )
283 % view (30 ,15)
284 % t i t l e ( [ ’ Gen0 : Phat ( dependent ) , ’ , cov name {3} ] )
285

286 %% Figure comparing zbar OU to Wiener , log−t rans
287 f i g u r e
288 subplot ( 1 , 2 , 1 )
289 p lo t ( t , Z log , ’ Color ’ , gray )
290 hold on
291 p lo t ( t g r i d , zbar hat gen0 ou ( t g r i d ) , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , lw )
292 t i t l e ( [ ’Gen0 : zbarhat ( independent , log−t r a n s f ) , ’ , cov name {1} ] )
293 subplot ( 1 , 2 , 2 )
294 p lo t ( t , Z log , ’ Color ’ , gray )
295 hold on
296 p lo t ( t g r i d , zbar hat gen0 wi ( t g r i d ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , lw )
297 t i t l e ( [ ’Gen0 : zbarhat ( independent , log−t r a n s f ) , ’ , cov name {2} ] )
298

299 % Comparisons
300 f i g u r e
301 subplot ( 1 , 2 , 1 )
302 p lo t ( t , Z , ’ Color ’ , gray )
303 hold on
304 p lo t ( t g r i d , exp ( zbar hat gen0 ou ( t g r i d ) ) , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , lw )
305 % a x i s ( [ t (1 ) t ( end ) 0 80∗10ˆ−3])
306 t i t l e ( [ ’Gen0 : zbarhat ( independent ) , ’ , cov name {1} ] )
307 subplot ( 1 , 2 , 2 )
308 p lo t ( t , Z , ’ Color ’ , gray )
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309 hold on
310 p lo t ( t g r i d , exp ( zbar hat gen0 wi ( t g r i d ) ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , lw )
311 t i t l e ( [ ’Gen0 : zbarhat ( independent ) , ’ , cov name {2} ] )
312 % a x i s ( [ t (1 ) t ( end ) 0 4∗10ˆ−3])
313

314 f i g u r e
315 subplot ( 2 , 2 , 1 )
316 s u r f (S ,T, G cand {1}(S ,T) , ’ L ineSty l e ’ , ’ none ’ )
317 view (−15 ,15)
318 t i t l e ( [ ’Gen0 : P0 , ’ , cov name {1} ] )
319 subplot ( 2 , 2 , 2 )
320 s u r f (S ,T, P hat gen0 ou (S ,T) , ’ L ineSty l e ’ , ’ none ’ )
321 view (−15 ,15)
322 t i t l e ( [ ’Gen0 : Phat , ’ , cov name {1} ] )
323 subplot ( 2 , 2 , 3 )
324 s u r f (S ,T, G cand {2}(S ,T) , ’ L ineSty l e ’ , ’ none ’ )
325 view (−15 ,15)
326 t i t l e ( [ ’Gen0 : P0 , ’ , cov name {2} ] )
327 subplot ( 2 , 2 , 4 )
328 s u r f (S ,T, P hat gen0 wi (S ,T) , ’ L ineSty l e ’ , ’ none ’ )
329 view (−15 ,15)
330 t i t l e ( [ ’Gen0 : Phat , ’ , cov name {2} ] )
331

332 % f i g u r e
333 % subplot ( 1 , 3 , 1 )
334 % s u r f (S ,T, P hat gen0 ou (S ,T) , ’ L ineSty le ’ , ’ none ’ )
335 % t i t l e ( [ ’ Gen0 : Phat , ’ , cov name {1} ] )
336 % view (−15 ,15)
337 % subplot ( 1 , 3 , 2 )
338 % s u r f (S ,T, P hat gen0 wi (S ,T) , ’ L ineSty le ’ , ’ none ’ )
339 % t i t l e ( [ ’ Gen0 : Phat , ’ , cov name {2} ] )
340 % view (−15 ,15)
341 % subplot ( 1 , 3 , 3 )
342 % s u r f (S ,T, P hat gen0 wi2 (S ,T) , ’ L ineSty le ’ , ’ none ’ )
343 % t i t l e ( [ ’ Gen0 : Phat , ’ , cov name {3} ] )
344 % view (−15 ,15)
345

346 f i g=s o r t ( get (0 , ’ c h i l d r e n ’ ) ) ;
347 f o r i =1: l ength ( f i g )
348 saveas ( f i g ( i ) , [ ’ f i g u r e ’ num2str ( i ) ] , ’ epsc ’ ) ;
349 end
350 % c l e a r v a r s −except G cand cov name gray lw r e l n E0
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C. Fitting Orthonormal Functions

C.1. Test Script

1 c l e a r v a r i a b l e s
2 c l o s e a l l
3 c l c
4

5 % Angles f o r view in p l o t s
6 az=−10;
7 ez =40;
8 %% Test : Estimate G f o r Generation 0
9 % Kirkpatr ick , Lo f svo ld and Bulmer g ive a method to estmate the

a d d i t i v e
10 % covar iance func t i on G f o r i n f i n i t e −dimens iona l t r a i t s
11

12 %% Import Data : Generation 0
13 [ ˜ , ˜ , raw ] = x l s r e ad ( ’ Se l Gen0Data dryad cleaned . x l s ’ , ’ e s t imat i on ’ ) ;
14 DSH=ce l l 2mat ( raw ( 2 : end , 1 0 : 1 5 ) ) ;
15 Z=ce l l 2mat ( raw ( 2 : end , 1 6 : 2 1 ) ) ;
16 % Log−trans form data
17 Z log = log (Z) ;
18 % Weighted average f o r time po in t s o f (DSH1 , . . . , DSH6)
19 t = mean(DSH, 1 ) ;
20 % Number o f time po in t s
21 n t = length ( t ) ;
22

23 %% Estimate covar iance G hat
24 G hat data = cov ( Z log ) ;
25 tmp=repmat ( t ’ , 1 , n t ) ;
26 y0=tmp ( : ) ;
27 tmp=tmp ’ ;
28 x0=tmp ( : ) ;
29 z0=G hat data ( : ) ;
30 f i g u r e
31 s c a t t e r 3 ( x0 , y0 , z0 , ’ MarkerFaceColor ’ , [ 0 . 75 . 7 5 ] )
32 view ( az , ez )
33 t i t l e ( ’Gen0 : Sample covar iance ’ )
34

35 %% Normalized Legendre polynomia ls
36 p n l eg=compute legendre ( n t ) ;
37

38 %% Compute matrix Phi
39 % Adjust / s c a l e time po int vec to r t to the domain o f the Legendre
40 % polynomia l s
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41 u = −1;
42 v = 1 ;
43 t a d j = ad jus t ( t , t , u , v ) ;
44 Phi=ze ro s ( n t , n t ) ;
45 f o r i =1: n t
46 f o r j =1: n t
47 Phi ( i , j ) = p n l eg { j }( t a d j ( i ) ) ;
48 end
49 end
50

51 %% Compute C o e f f i c i e n t matrix C G hat
52 C G hat = inv ( Phi ) ∗G hat data ∗ inv ( Phi ’ ) ;
53

54 %% Compute es t imate f o r a d d i t i v e covar iance func t i on G f o r x , y in [ t
(1 ) , t ( end ) ]

55 G hat gen0=compute G hat ( C G hat , n t , p nleg , u , v , t ) ;
56

57 n gr id =50;
58 t g r i d=l i n s p a c e ( t (1 ) , t ( end ) , n g r i d ) ;
59 [ S0 , T0]= meshgrid ( t g r i d , t g r i d ) ;
60 f i g u r e
61 s u r f ( S0 , T0 , G hat gen0 ( S0 , T0) , ’ L ineSty l e ’ , ’ none ’ )
62 view ( az , ez )
63 hold on
64 s c a t t e r 3 ( x0 , y0 , z0 , ’ MarkerFaceColor ’ , [ 0 . 75 . 7 5 ] )
65

66 % Extra p l o t
67 f i g u r e
68 subplot ( 1 , 2 , 1 )
69 s c a t t e r 3 ( x0 , y0 , z0 , ’ MarkerFaceColor ’ , [ 0 . 75 . 7 5 ] )
70 view (−10 ,20)
71 t i t l e ( ’Gen0 : Sample covar iance ’ )
72 subplot ( 1 , 2 , 2 )
73 s u r f ( S0 , T0 , G hat gen0 ( S0 , T0) , ’ L ineSty l e ’ , ’−. ’ )
74 view (−10 ,20)
75 hold on
76 s c a t t e r 3 ( x0 , y0 , z0 , ’ MarkerFaceColor ’ , [ 0 . 75 . 7 5 ] )
77 t i t l e ( ’Gen0 : Ghat ’ )
78

79 %% Test s e l e c t g r a d .m f o r Gen0 : ( G hat might not be p o s i t i v e d e f i n i t e ,
in t h i s case OK)

80 [ ˜ , ˜ , raw2 ] = x l s r e ad ( ’ Se l Gen1Data dryad cleaned . x l sx ’ , ’ e s t imat i on ’
) ;

81 DSH=ce l l 2mat ( raw2 ( 2 : end , 1 1 : 1 6 ) ) ;
82 t nextgen=mean(DSH, 1 ) ;
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83 Z nextgen=ce l l 2mat ( raw2 ( 2 : end , 1 7 : 2 2 ) ) ;
84

85 n = ce l l 2mat ( raw ( 2 : end , 9 ) ) ;
86 n=n(n˜=0) ;
87

88 f=ones (1 , l ength ( t ) ) ;
89 X=Z∗ f ’ ;
90 W=exp (X) ;
91

92 d=@(n) min (n) ;
93 n obs=s i z e (Z , 1 ) ;
94

95 [ e s t i m a t e s g e n 0 l e g , zpr ime hat gen0 l eg , zp r ime hat vec gen0 l eg ,
P hat gen0 leg , zba r ha t gen0 l eg , z b a r h a t v e c g e n 0 l e g ]= s e l e c t g r a d
( Z log ,W, d , n obs , t , ’ unre la ted ’ , ’ covfn ’ , G hat gen0 , G hat gen0 )

96

97 E0 = @( s , t ) min ( s , t ) ;
98 num fams=length (n) ;
99 r e l n =0.5 ;

100 [ e s t imat e s2 gen0 l eg , zpr ime hat2 gen0 l eg , zp r ime hat vec 2 gen0 l eg ,
P hat2 gen0 leg , G hat2 gen0 leg ]= s e l e c t g r a d ( Z log ,W, d , n , t , ’ r e l a t e d
’ , ’ covfn ’ , G hat gen0 , E0 , num fams , r e l n )

101

102 % Plots
103 gray = 1/255∗ [ 2 00 , 200 , 200 ] ;
104 t g r id tmp=l i n s p a c e ( t (1 ) , t ( end ) ,1000) ;
105 % [ S ,T]= meshgrid ( t gr id tmp , t gr id tmp ) ;
106 lw =1.1 ;
107

108 f i g u r e
109 subplot ( 1 , 2 , 1 )
110 % plo t ( t , Z log , ’ Color ’ , gray )
111 % hold on
112 % plo t ( t gr id tmp , z b a r h a t g e n 0 l e g ( t gr id tmp ) , ’ Color ’ , ’m’ , ’

LineWidth ’ , lw )
113 % t i t l e ( ’ Gen0 : zbarhat ( independent , log−t r a n s f ) , Legendre ’ )
114 % subplot ( 1 , 2 , 2 )
115 p lo t ( t , Z , ’ Color ’ , gray )
116 hold on
117 p lo t ( t gr id tmp , exp ( z b a r h a t g e n 0 l e g ( t gr id tmp ) ) , ’ Color ’ , ’m’ , ’

LineWidth ’ , lw )
118 t i t l e ( ’Gen0 : zbarhat ( independent ) , Legendre ’ )
119

120 t g r id tmp 2=l i n s p a c e ( t nextgen (1 ) , t nextgen ( end ) ,1000) ;
121 % f i g u r e
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122 % subplot ( 1 , 2 , 1 )
123 % plo t ( t nextgen , Z nextgen log , ’ Color ’ , gray )
124 % hold on
125 % plo t ( t gr id tmp 2 , zp r ime hat gen0 l eg ( t g r id tmp 2 ) , ’ Color ’ , ’m’ , ’

LineWidth ’ , lw )
126 % t i t l e ( ’ Gen0 : zprimehat ( independent , log−t r a n s f ) , Legendre ’ )
127 subplot ( 1 , 2 , 2 )
128 p lo t ( t nextgen , Z nextgen , ’ Color ’ , gray )
129 hold on
130 p lo t ( t gr id tmp 2 , exp ( zp r ime hat gen0 l eg ( t g r id tmp 2 ) ) , ’ Color ’ , ’m’ ,

’ LineWidth ’ , lw )
131 t i t l e ( ’Gen0 : zprimehat ( independent ) , Legendre ’ )
132

133 f i g u r e
134 subplot ( 1 , 2 , 1 )
135 s u r f ( S0 , T0 , G hat gen0 ( S0 , T0) , ’ L ineSty l e ’ , ’−. ’ )
136 view ( az , ez )
137 t i t l e ( ’Gen0 : P0 ( Legendre ) ’ )
138 hold on
139 s c a t t e r 3 ( x0 , y0 , z0 , ’ MarkerFaceColor ’ , [ 0 . 75 . 7 5 ] )
140 subplot ( 1 , 2 , 2 )
141 s u r f ( S0 , T0 , P hat gen0 l eg ( S0 , T0) , ’ L ineSty l e ’ , ’−. ’ )
142 view ( az , ez )
143 t i t l e ( ’Gen0 : Phat ( Legendre ) ’ )
144

145 f i g u r e
146 subplot ( 1 , 2 , 1 )
147 s u r f ( S0 , T0 , G hat gen0 ( S0 , T0) , ’ L ineSty l e ’ , ’−. ’ )
148 view ( az , ez )
149 t i t l e ( ’Gen0 : P0 ( Legendre ) ’ )
150 hold on
151 s c a t t e r 3 ( x0 , y0 , z0 , ’ MarkerFaceColor ’ , [ 0 . 75 . 7 5 ] )
152 subplot ( 1 , 2 , 2 )
153 s u r f ( S0 , T0 , P hat2 gen0 l eg ( S0 , T0) , ’ L ineSty l e ’ , ’−. ’ )
154 view ( az , ez )
155 t i t l e ( ’Gen0 : Phat ( dependent , Legendre ) ’ )
156

157 % c l e a r v a r i a b l e s
158 data tmp=c e l l ( 5 , 2 ) ;
159 data tmp{1 ,1}= t ;
160 data tmp{1 ,2}=Z ;
161

162 f i g=s o r t ( get (0 , ’ c h i l d r e n ’ ) ) ;
163 f o r i =1: l ength ( f i g )
164 saveas ( f i g ( i ) , [ ’ f i g u r e ’ num2str ( i ) ] , ’ epsc ’ ) ;
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165 end

C.2. Additional Functions

1 %% Compute normal ized Legendre polynomia l s
2 f unc t i on p n l eg=compute legendre (n)
3 p n l eg=c e l l (n , 1 ) ;
4 f o r j =0:n−1
5 p n leg { j+1}=@( x ) 0 ;
6 f o r k=0: f l o o r ( j /2)
7 p n l eg { j+1}=@( x ) p n l eg { j +1}(x )+(−1)ˆk∗nchoosek ( j , k ) ∗nchoosek

(2∗ j−2∗k , j ) ∗x . ˆ ( j−2∗k ) ;
8 end
9 p n l eg { j+1}=@( x ) (1/2) ˆ j ∗ s q r t ( (2∗ j +1)/2) ∗ p n l eg { j +1}(x ) ;

10 end

1 %% Adjust po int in time between f i r s t and l a s t time po int o f
measurement to a g iven range [ u , v ] ( e . g . the domain o f l egendre
polynomia l s [ −1 ,1 ] )

2 f unc t i on s a d j=ad jus t ( s , t , u , v )
3 s a d j = u + (v−u) /( t ( end )−t (1 ) ) ∗( s−t (1 ) ) ;
4 end

1 %% Compute es t imate f o r add i t ive−g e n e t i c covar iance func t i on G
2 f unc t i on G hat=compute G hat ( C G hat , n t , p nleg , u , v , t )
3 G hat=@(x , y ) 0 ;
4 f o r i =1: n t
5 f o r j =1: n t
6 G hat=@(x , y ) G hat (x , y )+C G hat ( i , j ) .∗ p n leg { i }( ad jus t (x ,

t , u , v ) ) .∗ p n leg { j }( ad jus t (y , t , u , v ) ) ;
7 end
8 end
9 end

D. Adjusted Ornstein-Uhlenbeck and Wiener

1 c l e a r v a r i a b l e s
2 c l o s e a l l
3 c l c
4 %% Candidates f o r covar iance f u n c t i o n s
5 % Use Ornstein−Uhlenbeck and Wiener covar iance func t i on as candidate

f o r the covar iance func t i on P and the a d d i t i v e g e n e t i c covar iance
func t i on G.

6

7 G cand=c e l l ( 3 , 1 ) ;
8 cov name=c e l l ( 3 , 1 ) ;
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9

10 % Ornstein−Uhlenbeck covar iance
11 G cand{1} = @( s , t ) exp (−0.25∗ abs ( s−t ) ) ;
12 cov name{1} = ’O−U adj1 ’ ;
13

14 G cand{2} = @( s , t ) 0 .25∗ exp (−0.1∗ abs ( s−t ) ) ;
15 cov name{2} = ’O−U adj2 ’ ;
16

17 % Wiener covar iance
18 G cand{3} = @( s , t ) 10ˆ−2∗min ( s , t ) ;
19 cov name{3} = ’ Wiener adj ’ ;
20

21 %% −2− Estimation us ing Genereat ion 0
22 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 %% Import Data ( Parent gene ra t i on )
24 %
25 % Z : N−by−T matrix conta in ing the weight o f the Tribol ium larvae ,

where N i s the number o f ob s e rva t i on s and T the number o f
measurements

26 % DSH: N−by−M matrix conta in ing the r e s p e c t i v e days o f measurements .
The k−th column conta in s the day o f each organism ’ s k−th
measurement .

27 % n : vec to r o f fami ly s i z e s , s t i l l c onta in s 0 s that need to be
removed .

28

29 [ ˜ , ˜ , raw ] = x l s r e ad ( ’ Se l Gen0Data dryad cleaned . x l s ’ , ’ e s t imat i on ’ ) ;
30 n = ce l l 2mat ( raw ( 2 : end , 9 ) ) ;
31 n=n(n˜=0) ;
32 DSH=ce l l 2mat ( raw ( 2 : end , 1 0 : 1 5 ) ) ;
33 Z=ce l l 2mat ( raw ( 2 : end , 1 6 : 2 1 ) ) ;
34

35 % Log−trans form data
36 Z log=log (Z) ;
37

38 % Create vec to r weighted average o f ages at which the f i r s t , second
, . . . measurements were taken

39 t=mean(DSH, 1 ) ;
40

41 Z tmp0=Z log ;
42 t tmp0=t ;
43

44 d=@(n) min (n) ; % s i e v e
45 n obs=s i z e (Z , 1 ) ;
46

47 %% Import Data ( Of f sp r ing gene ra t i on )
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48 [ ˜ , ˜ , raw2 ] = x l s r e ad ( ’ Se l Gen1Data dryad cleaned . x l sx ’ , ’ e s t imat i on ’
) ;

49 DSH=ce l l 2mat ( raw2 ( 2 : end , 1 1 : 1 6 ) ) ;
50 t nextgen=mean(DSH, 1 ) ;
51 Z nextgen=ce l l 2mat ( raw2 ( 2 : end , 1 7 : 2 2 ) ) ;
52 Z nextgen log=log ( Z nextgen ) ;
53 Z nextgen log mean=mean( Z nextgen log , 1 ) ;
54

55 %% Clear temporary v a r i a b l e s
56 c l e a r v a r s raw raw2 ;
57

58 %% Check import data Z and vec to r o f fami ly s i z e s n be f o r e e s t imat i on
59 i f ( s i z e (Z , 1 )˜=sum(n) )
60 e r r o r ( [ ’ Error in data Z or vec to r n . Number o f ob s e rva t i on s does

not match vec to r o f fami ly s i z e s ’ ] )
61 end
62

63 %% Compute f i t n e s s func t i on : D i r e c t i o n a l s e l e c t i o n , W=exp (X)
64

65 % Choices o f f
66 % f ( t ) = 1
67 f=ones (1 , l ength ( t ) ) ;
68

69 % f ( t ) = t
70 % f=t ;
71

72 % Method : I n t e g r a l
73 % f o r i =1: n obs
74 % X( i )=trapz ( t , Z( i , : ) .∗ f ) ;
75 % end
76

77 % Method : Sum
78 X=Z∗ f ’ ;
79 W=exp (X) ;
80

81 % f o r i =1:2
82 %% Independent Case
83 % Assumption : Sample o f unre la t ed organisms . Family s i z e s are

i r r e l e v a n t , only the number o f ob s e rva t i on s i s needed .
84

85 % Note : v a r i a b l e naming can be con fus ing
86

87 [ e s t imates gen0 ou , zpr ime hat gen0 ou , zpr ime hat vec gen0 ou ,
P hat gen0 ou , zbar hat gen0 ou , zbar hat vec gen0 ou ]= s e l e c t g r a d (
Z log ,W, d , n obs , t , ’ unre la t ed ’ , ’ covfn ’ , G cand {1} , G cand {1})
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88 [ e s t imates gen0 wi , zpr ime hat gen0 wi , zpr ime hat vec gen0 wi ,
P hat gen0 wi , zbar hat gen0 wi , zba r hat vec gen0 w i ]= s e l e c t g r a d (
Z log ,W, d , n obs , t , ’ unre la t ed ’ , ’ covfn ’ , G cand {2} , G cand {2})

89 [ e s t imates gen0 wi2 , zpr ime hat gen0 wi2 , zpr ime hat vec gen0 wi2 ,
P hat gen0 wi2 , zbar hat gen0 wi2 , zbar hat vec gen0 wi2 ]= s e l e c t g r a d
( Z log ,W, d , n obs , t , ’ unre la ted ’ , ’ covfn ’ , G cand {3} , G cand {3})

90

91 %% Dependent Case
92 % Observat ions are s t ruc tu r ed in independent f a m i l i e s o f organisms

with the same r e l a t i o n . Observat ions are f u l l s i b l i n g s g i v i ng the
the r e l a t i o n s h i p c o e f f i c i e n t 0 . 5 . The Wiener covar iance i s used
as a candidate f o r the environmental covar iance func t i on .

93

94 E0 = @( s , t ) 10ˆ−3∗min ( s , t ) ;
95 num fams=length (n) ;
96 r e l n =0.5 ;
97

98 [ e s t imates2 gen0 ou , zpr ime hat2 gen0 ou , zpr ime hat vec 2 gen0 ou ,
P hat2 gen0 ou , G hat2 gen0 ou ]= s e l e c t g r a d ( Z log ,W, d , n , t , ’ r e l a t e d ’ ,
’ covfn ’ , G cand {1} ,E0 , num fams , r e l n )

99 [ e s t imates2 gen0 wi , zpr ime hat2 gen0 wi , zpr ime hat vec 2 gen0 wi ,
P hat2 gen0 wi , G hat2 gen0 wi ]= s e l e c t g r a d ( Z log ,W, d , n , t , ’ r e l a t e d ’ ,
’ covfn ’ , G cand {2} ,E0 , num fams , r e l n )

100 [ e s t imates2 gen0 wi2 , zpr ime hat2 gen0 wi2 , zpr ime hat vec 2 gen0 wi2 ,
P hat2 gen0 wi2 , G hat2 gen0 wi2 ]= s e l e c t g r a d ( Z log ,W, d , n , t , ’ r e l a t e d
’ , ’ covfn ’ , G cand {3} ,E0 , num fams , r e l n )

101

102 %% Plots
103 gray = 1/255∗ [ 2 00 , 200 , 200 ] ;
104 t g r i d=l i n s p a c e ( t (1 ) , t ( end ) ,1000) ;
105 [ S ,T]= meshgrid ( t g r i d , t g r i d ) ;
106 lw =1.1 ;
107

108 f i g u r e
109 subplot ( 1 , 3 , 1 )
110 p lo t ( t , Z , ’ Color ’ , gray )
111 hold on
112 p lo t ( t g r i d , exp ( zbar hat gen0 ou ( t g r i d ) ) , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , lw )
113 t i t l e ( cov name {1})
114 subplot ( 1 , 3 , 2 )
115 p lo t ( t , Z , ’ Color ’ , gray )
116 hold on
117 p lo t ( t g r i d , exp ( zbar hat gen0 wi ( t g r i d ) ) , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , lw )
118 t i t l e ( cov name {2})
119 subplot ( 1 , 3 , 3 )
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120 p lo t ( t , Z , ’ Color ’ , gray )
121 hold on
122 p lo t ( t g r i d , exp ( zbar hat gen0 wi2 ( t g r i d ) ) , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , lw

)
123 t i t l e ( cov name {3})
124

125 f i g u r e
126 subplot ( 1 , 3 , 1 )
127 s u r f (S ,T, P hat gen0 ou (S ,T) , ’ L ineSty l e ’ , ’ none ’ )
128 view (−15 ,15)
129 t i t l e ( cov name {1})
130 subplot ( 1 , 3 , 2 )
131 s u r f (S ,T, P hat gen0 wi (S ,T) , ’ L ineSty l e ’ , ’ none ’ )
132 view (−15 ,15)
133 t i t l e ( cov name {2})
134 subplot ( 1 , 3 , 3 )
135 s u r f (S ,T, P hat gen0 wi2 (S ,T) , ’ L ineSty l e ’ , ’ none ’ )
136 view (−15 ,15)
137 t i t l e ( cov name {3})
138

139 %% Save f i g u r e s
140 f i g=s o r t ( get (0 , ’ c h i l d r e n ’ ) ) ;
141 f o r i =1: l ength ( f i g )
142 saveas ( f i g ( i ) , [ ’ adj ’ num2str ( i ) ] , ’ epsc ’ ) ;
143 end
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